
t

THIS DOCUMENT IS:

CONTROLLED BY

BdI_'.f'_'AYO
" GAGE CODE 81205

Advanced Space Transportation
2-1610
ALL REVISIONS TO THIS DOCUMENT SHALL BE APPROVED BY THE
ABOVEORGANIZATIONPRIORTO RELEASE

PREPARED UNDER _] CONTRACT NO.

[_ IR&D

[--] OTHER

NAS6-37855

PREPARED ON APPLE MACINTOSH II
DOCUMENTNO. D658-10010-1

FILED UNDER
MODEL STV

TITLE Space Transfer Vehicle Concepts and
Requirements Study Phase II Final Report

ISSUE NO.

/

/

TO DATE
g/30/g2

ADDmONAL LIMITATIONS IMPOSED ON THIS DOCUMENT
WiLL BE FOUND ON A SEPARATE LIMITATIONS SHEET.

SIGNATURE

PREPARED BY_._/_ _---J.. H. Cannon

SUPERVISED /-'_ :""BY:'_ _ _-G-_ _-_-_D.G. Andrews

APPROVEDBY" _ _ _;_ S.D.Goo

ORGN

2-1612

2-1612

2-1610

(NASA-CR--/Te/_JeSPACETRANSFER
VEHICLE CONCEPTS AND REQUIREMENTS

STUDY, PHASE 2 Final Report

(Boeing Aerospace Co.) 300 p

DATE

N93-16660

Unclas

0i41151



RD_='J,_VO

SPACE TRANSFER VEHICLE
CONCEPTS AND REQUIREMENTS STUDY

Phase II Final Report

D658-10010-1
September, 1992

DPD NUMBER-709
DR NUMBER-4

CONTRACT NAS8-37855

Submitted to

The National Aeronautics and Space Administration
George C. Marshall Space Flight Center

By
Boeing Defense & Space Group

Seattle, Washington 98124

NEW D658-10010-1



FOREWORD
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Space Transportation Vehicle
Concepts and Requirements Study

Final Report

NASA is currently studying new initiatives of space exploration involving both piloted

and unpiloted missions to destinations throughout the solar system. Many of these

missions require substantial improvements in launch vehicle and upper stage

capabilities. The Space Transfer Vehicle (STV) Concepts and Requirements Study

provides a focused examination of the space transfer vehicles required to perform

these missions using the emerging national launch vehicle definition, Space Station

Freedom (SSF) definition, and the latest mission scenario requirements.

This final report is a compilation of the Phase 1 and Phase 2 study findings and is

intended as an STV 'users guide' rather than an exhaustive explanation of STV

design details. It provides a database for design choices in the general areas of

basing, reusability, propulsion, and staging; with selection criteria based on cost,

performance, available infrastructure, risk, and technology.

The report is organized into the following three parts:

Part 1: I_esign Guide

Part 2: STV Phase 1 Concepts and Requirements Study Summary.

Part 3: STV Phase 2 Concepts and Requirements Study Summary

The overall objectives of the STV study were to: 1) define preferred STV concepts

capable of accommodating future exploration missions in a cost-effective manner, 2)

determine the level of technology development required to perform these missions in

the most cost effective manner, and 3) develop a decision database of programmatic

approaches for the development of an STV concept.

By direction of the NASA, all concepts were limited to using high performance

cryogenic propellants (LO2/LH2), and the timing of the study was such, that special

emphasis was given to examining the lunar exploration scenario in support of the

Presidents Space Exploration Inititative. This was entirely appropriate because the

lunar exploration mission with its Lunar Transportation System (LTS) provides the only

near-term justification for a new upper stage vehicle.

NEW D658-10010-1 1
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The S'IV Concepts and Requirements study was conducted in two phases. Phase 1 of

the study, from August 1989 to April 1991, focused on lunar and evolutionary mission

performance, as well as use of the Space Station Freedom (SSF) as an assembly or

refurbishment node. Phase 1 results showed that use of SSF enable use of smaller,

more affordable launch vehicles, but that the additional on-orbit infrastructure and

operations were very expensive, and were not cost effective for the low flight rates

associated with currently proposed exploration scenarios.

Accordingly, Phase 2, from April 1991 to April 1992, focused on the use of larger

launch vehicles derived from the National Launch System (NLS) family, with less

emphasis placed on mission performance, more emphasis on transportation cost, and

no use of the Space Station Freedom as an assembly or servicing node. Phase 2

results showed that the design-to-cost approach could save roughtly twenty percent of

the total transportation Life Cycle Cost (LCC) by: 1) minimizing the number of elements

developed, 2) using existing technologies were practicable, and 3) making certain

program elements reusable. Unfortunately, one key issue, whether to go to the moon

with a single launch of a massive booster twice the size of the Saturn V, or two

launches of an NLS derived booster with on-orbit rendezvous and docking was left

unresolved. Accurate facilities and ground operations cost data was not available

before the conclusion of Phase 2.

NEW D658-10010-1 2



1. Design Guide

In general, a transportation system delivers a payload from one point to another. In the

case of a space transportation system, the purpose is to deliver payload from the

Earth's surface, where it is produced, to an orbit or destination in space, and possibly

return a payload or part of the system itself back to the Earth's surface. The 'best'

space transportation system does this in the most efficient manner using the resources

available, with the lowest cost, and with the least amount of risk to life or mission

success. Figure 1.0-1 shows a summary of this design process, beginning with an

objective (purpose), and limited by constraints or requirements (resources).

For example, if the goal is to establish a permanent base on the Moon, a rather large

amount of oversized cargo must be delivered to the lunar surface, and people to

assemble and checkout that cargo must be safely transported and returned

periodically. Characteristics of the optimum transportation system design (basing

location, number of stages, degree of reusability, and crew module design) for this

mission objective depend on available funding, prospective infrastructure (facilities,

launch vehicle, LEO node, etc.), and technology (or the willingness to pay for

enhancements in these areas).

The purpose of this design guide is show the relationships between program

objectives, mission requirements, and design characteristics, as derived from results of

the STV Concepts and Requirements Study, Phases 1 and 2. This guide will also

point out areas, such as cost and risk, that provide discrimination between design

concepts, but that cannot be determined with total accuracy at this stage of design

development. Ideally, this guide is meant to be used as a decision making tool to help

program planners determine which LTS concepts are worth pursuing in future Phase

B studies.

NEW D658-10010-1 3
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1.1 STV Program Objective

In general, the objective for a space transportation system is to support one or more of

the following missions: 1) Advancement of Science, 2) Human Exploration or

Knowledge Building, 3) Expansion or Protection of the Human Habitat, and 4) Space /

Planetary Resource Utilization

The STV Concepts and Requirements Study objectives are summarized as follows:

STV PRIMARY OBJECTIVE - Provide a cost effective lunar transportation system (LTS)

capable of supporting a human exploration program which results in a manned

outpost on the moon.

STV EVOLUTIONARY OBJECTIVES - Provide an evolvable transportation system

capable of supporting high energy upper stage missions such as boosting planetary

probes and delivering geosynchronous or other high orbit satellites beginning about

the year 2000; and also provide the basis for an evolvable transportation system

capable of supporting a human exploration program leading to a manned outpost on

Mars.

1.2 Requirements / Discriminators

The requirements that influence the nature of an STV design include funding

availability, mission requirements, infrastructure availability, environmental

requirements, and technology availability. An additional requirement, that the system

use cyrogenic propulsion, was a study groundrule imposed by the NASA. Additional

analyses, done under Boeing funding, examined alternate propulsion systems and

determined that LO2/LH2 propulsion was indeed the correct choice for the lowest cost,

lowest risk lunar transfer system. Discriminators between concepts include: cost,

mission performance, risk and safety, and technological advancement.

Based on the study objectives, the best S'I'V design will support a lunar program with

the lowest cost, best performance, and in the safest manner possible, while not

precluding the capability of performing other missions, and while adding to the

technology and infrastructure needed for going to Mars. There appear to be several

concepts which meet the requirements and objectives, and do so with reasonable

costs.

NEW D658-10010-1 5
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1.2.1 Mission Requirements / Performance

Mission performance is a measure of how well a concept meets mission requirements

such as delivered payload and mission delta-velocity. In general, the best performing

vehicle concept will deliver the most payload to the desired location for the least amount

of mass delivered to orbit. A summary of the study mission requirements in terms of

delivered payload and total required delta-velocity are shown in Figure 1.2.1-1. The

missions fall into one of three categories - piloted or unpiloted lunar outpost support,

unpiloted delivery, and piloted or unpiloted delivery and recovery. For the lunar outpost

support missions, the overall program consists of both piloted and unpUoted missions, as

shown in Figure 1.2.1-2. In this case, concept performance is not just based on piloted

missions or cargo missions, but on the mixture of both piloted and unpiloted missions that

meet the program objective. A typical lunar mission reference trajectory, with mission

times and delta-velocities is shown in Figure 1.2.1-3.

a. Lunar Mission - Lunar missions include two-way piloted and one-way cargo-

only missions to the lunar surface. For the cargo missions, it is assumed that the

lander remains on the lunar surface after delivery of the cargo.

b GEO Delivery Mission - Geosynchronous Earth Orbit (GEO) delivery

missions are cargo-only delivery missions to GEO, with the transfer stage returned or

placed into a collision-avoidance trajectory after delivery of the cargo.

c Molniya Delivery Mission - Molniya delivery missions are cargo-only delivery

missions to a 12-hr Molniya orbit, with the transfer stage returned or placed into a

collision-avoidance trajectory after delivery of the cargo.

d Planetary Delivery Mission - Planetary delivery missions place a planetary

probe on a specified escape trajectory, after which the transfer stage is returned or

placed into a collision-avoidance trajectory.

e Nuclear Disposal Mission - Nuclear disposal missions are one-way

missions to retrieve and dispose of spent space reactors or debris on a trajectory to the

sun.

NEW D658-10010-1 6
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f Polar Servicing Mission - Polar servicing missions are two-way servicing

missions to satellites in a polar orbit from the Space Station. These are not applicable

for ground-based concepts

g Capsule Recovery Mission - Capsule recovery missions are two-way piloted

missions to retrieve sample capsules from highly-elliptical Earth orbits.

1.2.2 Funding

The United States has entered a period of limited financial resources for space

exploration. The political viability of any proposed lunar exploration program will

depend in part on the amount of money that is required for development, test, and

operation of an STV/LTS program. In the absence of a specified set of funding

constraints, estimated program life cycle cost is used as a measure of merit for doing

system and architecture trade studies.

There is a definite trade between nonrecurring and recurring costs as a function of

vehicle reusability. In Phase I, we examined relative Life Cycle Costs for LTS options

ranging from almost totally reusable one-and-half and two-and-a-half stage concepts

to totally expendable three and four stage concepts. These trade studies were

accomplished using parametric, factoring, and analogy cost estimating methods, and

showed that only the manned crew module should be reused, given the low flight rates

predicted. All cost comparison data was developed in constant-year 1989 or 1991

dollars.

An example of a typical unconstrained funding profile from the Apollo program,

escalated to 1991 dollars using NASA cost inflation indices, is shown in Figure 1.2.2-1

The funding profile includes Apollo program S-IV stage, Command Service Module

(CSM), and Lunar Module (LM) vehicle development and hardware fabrication costs.

Recurring operation and support costs were not accessable by Boeing analysts during

the STV study. The cost data shown for the Apollo program is one reference for the

study. Review of the current NASA funding request and authorization allocation

listings gives the study members another reference of cost data for comparisons of

cost estimates in the STV study.

Total life cycle cost (LCC) and peak funding are of interest in evaluating STV program

and design alternatives. As the system trade studies progress and better program

NEW D658-10010-1 10
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planning data is developed, the peak funding profile attribute becomes more definitive

and is included as part of the funcling discriminator.

a. Program Non-Recurring Costs - Non-recurring development costs and

production tooling costs are the "up-front" costs associated with design, development,

testing, and evaluation (DDT&E) of the STV engineering tasks, flight hardware,

software, and system facilities. Usually, the development cost estimates for system

evaluation exercises include launch site preparation, operational facilities (including

any space station operations provisions required for STV support), and some sort of

"pathfinder" program where the facilities and flight hardware are certified for initial

operational capability (IOC).

During the s'rv study these costs were estimated using several contractor parametric

cost models (Boeing and Martin Madetta proprietary cost models), the NASCOM-H

model (used for govemment estimates by NASA only), and the GE-Price cost

modeling system (for some hardware and software subsystem estimates). When

available, reliable hardware planning estimates were obtained from the hardware

manufacturers (for example, Pratt & Whitney personnel provided most of the RL10

engine derivative estimates used for the design and system trade study estimates.)

Figure 1.2.2-2 is a typical hardware description sheet used for documenting inputs to

these parametric cost models during the STV study. Notice that the majority of the

paramatric cost model inputs on the sheet are information from the design and mass

properties engineers. The parametric cost models are driven by the platform level

(systems specification level assumptions) and the complexity and physical design

descriptions of the system flight elements. The success of the whole cost estimating

process is dependent upon cooperation and accurate communication between the

concept designer/configurator, performance analyst, mass properties estimator,

program planner, management, and the cost analyst (or estimator.)

b. Program Recurring Costs - Recurring program costs are associated with

manufacturing production articles, preparing the flight hardware and crews for

launching, launching the system, and performing ownership functions of the S'IV

systems over the last three life cycle phases of the program. The three program

NEW D658-10010-1 12
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Boeing Cost Analysis Input Data Worksheat
(Description Sheet)

Title: STV Main Engine Propulsion - lander Sta_ Date: 12-14-91

WBS No.: 7,73.2.1..3.1 (Ascent/descent on_) Idalce, Buy, or GFE? GFE

Dee4:dptlon of Item: Pratt & Whitney RL10 model derivative -B2 on,line rated at

468.3 lip @ 22,000 Is. of thrust. Flequlme nozzle extension and retraction

modifications, eatlmated expen_lon ratio of 330:1, x high mllabUlty rating, and

a high confidence level of t_tlng for application to STV Lunar mlmdorm.

Similar Hlatod© Items: RL10A-3-3A used on Atlu/Centaur pro_lmm.

Dry Weight (pounds) 422 Ibe, (w/o ctlr.)

Volume (ft s ) 625 cu. ft.

Quantity per Assembly: Dev. Test

Integretlon Factom (INTEGE/S) Electronics

Platform Spec. Level Space Launch System

PARAM

2 Production 2

Structural

Component De_,riptom:
Mec:hanlcak'St ructu ral

Structure Weight

Idanuf.¢oml_xity
Tech. Maturity

Electdcal/Electmnlce

Density (IbsJlt 3)
Type of Circuit
(Digital/Neural/Analog)

_wel 2
1993

Percent New Design 20_

Design Repeat TM stage engines

Technology Year

Scale (LSWSLI)

Surface Area 166 In. Ion_l; 91 In. diam.

(OTS)

Other Oeecdptors:

Idanuf. Complexity:
Tech. MaturW

Estimated Thru-Put (KIS: (FY 1991)

DDT&E $ 265 M

ManuL Curves Selected: DDT&E 95%

_chedule/'i'ask ComDlexltv:
Devalonment (DOT&E)

Start Date 1994

1st Unit AvallJDelivered 1999

Complete Date 2001

Complexity (Price Model)
intog. & Test Complexity level 8

Develop Test Units Qty. (10 in $ 265 M)
Right Units Qty. 4 + 1 spare
Qualification Units Qty. 2

Power Requirement
Percent New Design
Design Repeat

ProductJon
TFU $ 2.9M

Production 100%

Produ_lon
1995 Uo.Q leed)

2001

2018

(Watts)
(OTS)

'(ECMPLX) (MCPLX)
(FJSPLANS)

(Proto.)

Figure 1.2.2-2 Example of STV Cost Analysis Input Sheet for Lunar Lander Stage Ascent Moduk

_ NEW D658-10010-1 13
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phases after DDT&E are Production, Operation and Support, and Disposal. The

Disposal phase was not addressed in the s'rv system trade studies.

(1) Production -These recurring costs are estimated using the parametric

cost models previously described. The parametric cost models are used to

produce Theoretical First Unit (TFU) cost estimates. The TFU estimates are

extended into full production lot buy estimates using cost improvement

(leaming) curves and spares and manufacturing support factors. NASA-

provided program level factors are added at the life cyle cost summary level

to the production estimates (in constant-year dollars.) Reusability and flight

rate assumptions greatly influenced the production cost estimates in the STV

studies.

(2) Operation and Support (O&S) - These recurring costs are not estimated

by the traditional parametric cost modeling systems. Because of the unique

characteristics of O&S tasks in the life cycle, no standardized models exist

for cost estimating STV O&S phase activities in the trade studies. The O&S

estimating process consisted of estimating O&S phase elements based on

prior functional flow experience on Apollo and NSTS Shuttle missions,

estimating relationship formulas from Kennedy Space Center databases,

task manloading estimates, a_d preliminary hardware refurbishment and

maintenance concept descriptions. The O&S estimating process success is

dependent upon cooperation and acurate communication between the end

user representatives, contractor system concept designer/configurator,

operations analyst, program planner, management, and the cost analyst

(or estimator.)

c. Life Cycle Cost Summaries - The non-recurring and recurring costs are

summarized after the application of program level factors. The program level factors

for the STV study cost estimates are specified by the NASA MSFC study office. The

three program level factors include: a requirements change factor (30 to 35%

management contingency); a prime contractor fee factor (8 to 10%); and a

government program support factor (5 to 15% adminstration, analysis, and

government laboratory program support.) Some of the early system cost trade studies

were conducted without the application of the program level factors; however, as the

range of preferred options was narrowed, the program factors were applied to the final

NEW D658-10010-1 14
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phase I and all subsequent phase II cost estimates for STV systems. The LCC and

non-recurring/recurring cost estimate relationships (magnitudes and ratio to total LCC)

change as the trade studies progress. This document will attempt to describe these

ratio and relative cost magnitude changes, in summary format, for each step of the

STV "design for cost" trade study process.

NEW D658-10010-1 15
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1.2.3 Space Program Infrastructure

STV design is highly dependant on the rest of the space program infrastructure,

especially the launch vehicles available, the manufacturing and operations facilities,

and space node facilities if required.

a. ETO capability - In the analyses described here, the reference launch

vehicle could launch 130 t to LEO, assuming a suborbital burn of the Trans-lunar

Injection (TLI) stage. This approach required the payloads from two launches to

rendezvous and dock in LEO prior to the TLi bum. We also analyzed several

variations of the proposed large Heavy Lift Launch Vehicle (HLLV) which could place

210 t in LEO and perform the lunar mission in one launch. All launch vehicles were

configured with 10 m diameter shrouds.

b. Space node facilities - Based on results in the Phase I analyses, no space

assembly, servicing, or storage nodes were used in the reference missions. This

includes SSF in LEO and possible storage nodes in LLO. In both cases the cost of

developing the node exceeded the recurring cost savings from the improved

performance, given the relatively small number of flights in the lunar exploration model

(17 manned missions).

1.2.4 Environment

The physical environment encountered by the STV affects both subsystem design and

vehicle configuration.

a. Subsystem Requirements - Since the STV will be manned on some missions,

subsystems must be designed for two sets of requirements.

(1) Crew Requirements - In the piloted missions, provisions must be made

to keep the crew alive and well for the duration of the mission, as well as

provide for safe return in the case of a mission abort. Functional

requirements for crew module design are shown in Figures 1.2.4-1, and

1.2.4-2, human metabolic requirements are given in Figure 1.2.4-3.
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(2) Vehicle Flight Requirements- Environmental concerns affecting the

vehicle design include thermal environments, exposure to vacuum,

exposure to lunar dust and debris, exposure to orbital debris and

meteoroids, as well as exposure to solar events.

b. Configuration Constraints - Vehicle configurations are constrained by launch

requirements (shroud size and launch escape provisions), engine gimbal

requirements for engine-out capability, and lunar landing requirements.

(1) Shroud Size - In order to minimize impact on the launch vehicle design

due to aerodynamic stability and control considerations, it is desirable to

make the shroud as short and as close to the launch vehicle diameter as

possible, and also to avoid extremely blunt shroud shapes. A shroud

diameter of ten meters appears necessary to accommodate balanced lunar

lander designs.

(2) Launch Escape Provisions - When the crew is launched aboard the

STV, provisions must be made for escape from the launch vehicle in the

case of a launch abort. In order to escape, the crew module must be at or

near the top of the launch stack and must meet the requirements of launch

escape g-levels, atmospheric deceleration, and emergency water landing.

(3) Engine gimbal requirements - Engine-out capability is one way to

improve crew safety and mission success probability. To minimize required

engine gimbal angles in an engine-out case, the vehicle C.G. needs to be as

far as possible from the engine gimbai point. This drives the vehicle to

longer, smaller diameter shapes; or to alternate control methods such as

thrust balancing with throttable engines.

(4) Lunar Landing - Lunar landing requirements are opposite from the

engine gimbai and launch requirements, in that it is preferable to have a

short distance from the crew module to the lunar surface, with a large vehicle

diameter and short c.g.-to-surface distance to minimize landing gear

requirements.

NEW D658-10010-1 20
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c. Ground Facilities - The STV systems must also withstand the environment prior to

launch. This environment includes not only the heat, humidity, and salt spray at the

KSC, but also the dust, bumps, and shakes common during transit from the factory to

the launch site.

1.2.5 Risk / Safety

Risk is a measurement of contributions to mission or program failure, including

technical and programmatic risks.

a. Technical risk - Operational and development phase risks are driven by

STV technical definition uncertainties, including mission performance and operations

risks (margin reduction, failure to meet mission objective), lunar mission crew safety

risks (safe abort capability), hardware reliability (redundancy, reliability), etc.

Technical risk also includes the uncertainty associated with the accomplishment of

STV development testing. The STV development tests must be performed to the

specified (or assumed) STV operational requirements, and also to a reasonable level

of confidence. The development technical design and test schedule risks are

synergistic.

b. Programmatic risk - Life cycle program risks include cost, management,

schedule, and other development risks. These may be expressed by a cost

uncertainty analysis, a selection of programmatic risks from a maturity scale (usually

from levels 1 to 10), or a combination of both methods. Both of these methods were

used to some degree in the STV study. Overall scoring was accomplished using the

maturity scale method for margins and risk evaluation.

A cost uncertainty model, the Boeing-proprietary Ranger model, was used at the end

of phase I to evaluate the development cost risk. Ranger was used to calculate cost

uncertainty ranges for several STV system design flight element finalists to provide the

customer with some comparison to the NASA-supplied requirements change

(management reserve) factor. The commercially-available @Risk application software

tool is a viable alternative to the Ranger method and it has more flexibility to use

different curve types for the system cost element distributions.
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1.2.6 Technology

The relationship of technology to vehicle design is shown in Figure 1.2.6-1. The level

of technology available for use by the STV system designers is a design constraint.

For example, a STV design using aerobraking might have better performance than

one that returns to the ground. However, the aerobraked STV configuration design

effort may be delayed in development due to problems associated with aerobraking

technology demonstrations or with testing to the level of confidence desired. Also the

additional aerobrake development may be very costly.

Technologies may also be advanced by the STV program for use in other applications.

In the scoring of technology applications for prior STV designs, the technology

advancement was measured in terms of: (1) the number of technology areas expected

to advance; (2) weighted by the extent of the expected advancement in those selected

areas; and then (3) ranked by the criticality of those technologies to the intended STV

application (enabling; enhancing). Later in the phase I study process, a NASA

technology maturity scale for statusing these technologies was adopted for S'I'V study

use. The up front cost of technology and advanced development projects, the

potential of payback from technology areas advanced by STV, as well as the

possibility of achieving the technology level required by the program preliminary

design review (PDR) date, are all concept discriminators.

a. Application to Mars Missions - Most of the technologies applicable to STV

can be applied to development of a mission to Mars, as well as to other space program

applications. Mars applications include those technologies that will benefit directly

the development of a mission to Mars. These may include aerobraking technology,

Iow-g propellant transfer, long-term cryogenic storage, crew module life support

systems improvements, advanced guidance and landing systems, etc.

b. Other Applications - The other applications technologies category includes

those technologies that contribute to other space programs like satellite servicing

systems, commercial industry "free flier" space platforms, or space science

applications. Examples of these other technology inprovement applications might

include solid state fuel cell technology, improved vehicle health management

subsystems, smart structure, neural network software, new robotics, etc.

NEW D658-10010-1 22
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c. Maturity Scale - Figure 1.2.6-2 contains the NASA maturity scale adopted

by the STV technology research team (NASA MSFC, Boeing, and Martin Marietta)

during Phase I of the STV study. The symbols on the scale are used for milestones on

technology and advanced development schedules. The use of these symbols helped

to quickly assess the status of various hardware and software subsystems within a

Space Exploration Initiative (SEI) and STV technology area.

d. Critical Technologies Summary Example - A summary of critical

technologies developed during phase I, associated with generic STV space-based

and ground-based designs, is presented in Figure 1.2.6-3. Each of the critical

technology areas was researched in some detail for the SEI Technology liaison office

at MSFC. A technology priority listing (like the one shown) will change, depending

upon the operational flight characteristics and integration complexities of the srv

candidate system(s). See section 2.1.3 for a further discussion of the technologies

associated with STV phase I designs and advanced development.
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1.3 STV/LTS Design Options

Several concept characteristics can be traded to allow an STV design to meet key

design ddvers.

1.3.1 Cargo De.very Options

Lunar cargo delivery design options include:

(1) Separate vehicle designs for the piloted and cargo missions (small piloted vehicle

and large cargo vehicle), and

(2) Common vehicle design for both piloted and cargo-only missions (optimized cargo

split).

Recommendations -Although performance per mission favors an increased number

of missions with smaller cargo on each mission, both overall performance and life

cycle cost (LCC) favor the least number of cargo flights with a common piloted / cargo

mission design, as shown in Figure 1.3.1-1.
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1.3.2 Propulsion Options

Propulsion system variables that can affect performance, cost, risk, etc include main

engine type and propellant (engine Isp, engine thrust level, and engine throttling

capability). The requirements for chemical propulsion are given in Figure 1.3.2-1.

a. Orbit Transfer - Although this study was groundruled to use chemical

propulsion systems, other engine types and propellants are available for lunar

transfer, where low thrust, high Isp engines can provide significantly increased cargo

delivery for the same ETO launched mass. This is effective because cargo is not as

time-limited as piloted systems. Options included are shown in Figure 1.3.2-2. Use of

more advanced propulsion does reduce the number of ETO launches required, but it is

more economical to develop a low cost launch system and use a chemical LTS, than

develop nuclear or electric vehicles and struggle with inefficient ETO launch system.

b. Lunar Landing - For lunar landing, thrust levels may be required to maintain

near-hover conditions as well as lunar ascent thrust levels, so engines with some

throttle capability are required, as shown in Figure 1.3.2-3.

c. Ascent / Return Propulsion - If the piloted vehicle is required to stay on the

lunar surface for an extended period of time, one method of avoiding boiloff of

cryogenic propellant is to use storable propellants in a separate ascent stage. The

drawbacks include poorer performance due to lower engine Isp and additional

propulsion systems inert weight. Some higher performance storable propellant

options, such as Aluminum Hydride gel fuel / hydrogen peroxide oxidizer, are also

possible, but development costs increase significantly. A comparison of the possible

design options is shown in Figure 1.3.2-4, with associated performance and cost

comparisons given in Figure 1.3.2-5.

d. Sensitivity to Engine Isp- A twenty second increase in the engine specific

impulse of the TLI stage increases lunar cargo by 380 kilograms. A twenty second

increase in in both the TLI and lander stages increases lunar cargo by 1000 kilograms

as shown in Figure 1.3.2-6.
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1.3.3 Trajectory Options

a. Earth-to-Orbit Options - Options for the mission phase extending from

launch to the start of trans-lunar injection are shown in Figure 1.3.3-1 and include

single launch, dual launch with Earth orbit Rendezvous, and multiple launch with LEO

assembly. A comparison of the abort availability for each option is shown in Figure

1.3.3-2.

(1) Single Launch - For this option the STV with cargo, crew module, and

crew is launched complete in one launch, similar to Apollo. This option

would require development of a large booster (>200 metric ton class).

Abort opportunities are available during any phase of the launch with the

use of an Apollo-type launch escape system (LES). The crew can safely

escape from the launch vehicle and return to a water or land landing.

(2) On-Orbit Rendezvous - This option has elements launched separately

and, through a series of rendezvous and docking maneuvers, the STV and

cargo is assembled autonomously in LEO.

As for abort opportunities, if the crew is launched aboard a ground-return

crew module with an LES, they can safely escape from the launch vehicle

and retum to a water landing during any phase of the launch or on-orbit

operations. If launched aboard an aerobraked LEO-retum crew module, an

abort would require the crew to walt for an STS rescue.

(3) LEO Assembly - In this option, the vehicle, cargo, crew, and propellant

or propellant tanks would be launched from Earth in multiple launches,

assembled at a LEO node (SSF-assumed), and then depart from the LEO

node.

Abort opportunities for this launch option are similar to the dual-launch

scenario. In this case though, the LEO node could serve as a safe haven for

the crew while awaiting an STS rescue launch.
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(4) Recommendations- A summary of the Phase 1 findings conceming ETO
options is shown in Figure 1.3.3-3. The single-launch and dual-launch LEO-
rendezvous scenarios had the least risk and lowest cost, respectively, with

overall scores favoring the dual-launch LEO-rendezvous option. The single-
launch and dual-launch options were studied further in Phase 2.

b. Lunar Insertion / Landing - Options for the mission phase extending from

trans-lunar injection to Earth orbit insertion are shown in Figure 1.3.3-4 and include

Lunar Surface Direct, Lunar Orbit Direct (LOD), and Lunar Orbit Rendezvous (LOR). A

comparison of the abort availability for each option is shown in Figure 1.3.3-5.

(1) Lunar Surface Direct - The direct approach is a single burn approach

where the landing site is targeted and the STV performs a single landing

burn. In this case, a safe abort could be accomplished up to the lunar

targeting or insertion burn, which puts the vehicle onto an impact trajectory.

This makes this option less safe for the crew than the other options, but

could be a viable option for a cargo-only mission.

(2) Lunar Orbit Direct - This approach was conceived during evaluations of

the lunar surface direct option to mitigate some of the safety concerns

related to the lunar surface direct approach. In this scenario, the STV inserts

into an elliptical lunar orbit and then, without leaving anything in orbit,

performs a landing burn. The approach assumed, would be to burn into the

transfer orbit, stay in this orbit for only a portion of a revolution, and then

accomplish the lunar landing. The use of a fractional orbit may be ambitious

in terms of navigational capability, so the option exists to stay in this elliptical

orbit for some number of revolutions prior to landing. This would initially

provide time for navigation updates while providing a growth path to the

fractional orbit approach as navigation capabilities are verified.

(3) Lunar Orbit Rendezvous - The LOR approach was used for the Apollo

missions. Depending on the vehicle concept, Earth-to-LLO transfer and/or

return elements may be left in a LLO parking orbit while the lunar surface

tasks are performed. Upon completion of the lunar surface stay, the lunar

excursion portion of the STV would rendezvous and dock with the elements

NEW D658-10010-1 39



APO_='JN_

|

! - 2

.& _" j

O. o

.o_;

ao MU, m-°_o.U

• • • • •

- NEW D658-10010-1 40



NEW D658-10010-1 41



BWNB

NEW D658-10010-1 42



,B'OfJA/',_'

stored in LLO and the return to Earth would be initiated. Between missions,

some flight elements (e.g., LLO-based excursion stages and/or excursion

crew modules) may be left in LLO to be refueled and used for the next lunar

excursion. LOR abort issues are discussed in Figures 1.3.3-6 thru 1.3.3-9.

(4) Recommendations - A summary of the Phase 1 findings concerning

lunar orbit options is shown in Figure 1.3.3-10. The facts are that LOR

provides additional performance, but at unacceptable risk. This was not the

case for the Apollo missions, because those missions all landed near the

lunar equator, where there are frequent opportunities to launch and

rendezvous with the TEl stage. Future missions will visit sites well off the

equator, where rendezvous opportunities require almost impossible AVs for

days to weeks at a time. This, combined with the cost of developing a TEl

stage capable of autonomous operation in LLO for months at a time, led us

to recommend the lunar orbit direct approach for manned lunar exploration.

The potential savings of thirty to forty tons of launch mass with LOR are not

worth the additional program cost and the risk of stranding astronauts on the

lunar surface during an emergency.

c. Earth Return Options - Options for the return to Earth mission phase are

shown in Figure 1.3.3-11 and include direct reentry to the ground, aerobraked return to

LEO with STS recovery, aerobraked return to LEO with LEO node storage, and all-

propulsive return to LEO. A comparison of the abort availability for each option is

shown in Figure 1.3.3-12.

(1) Direct reentry to ground - In this option the crew module returns in a

guided trajectory to the launch site for refurbishment and reuse. The method

of abort during this mission phase is an abort to a water landing in case of

partial parachute or guidance system failure.

(2) Aerobraked return to LEO, STS recovery - This option uses an

expendable aerobrake to slow down by braking through the Earth's

atmosphere. After achieving Earth orbit capture, the aerobrake is jettisoned

(too large to fit in the shuttle payload bay), and a propulsive maneuver of

approximately 310 m/s _V is required to circularize into a rendezvous orbit
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Figure 1.3.3-7 LOR Abort Using Tycho Base Example
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with a waiting shuttle. The crew module is placed in the shuttle payload bay

and retumed to the ground for refurbishment and reuse.

For this option, the vehicle must be able to perform the aeromaneuver and

retum to a stable LEO orbit. In the case of an abort, the crew must wait on-

orbit for a Shuttle rescue.

(3) Aerobraked return to SSF, LEO Storage -This option also uses a

reusable aerobrake to slow down by braking through the Earth's

atmosphere. After Earth orbit capture, the vehicle is circularized propulsively

in the LEO transportation node orbit, and is refurbished and stored at the

LEO node for reuse. The crew is returned to ground via the Shuttle or a

PLS.

For this option also, the vehicle must be able to perform the aeromaneuver

and retum to a stable LEO orbit. In the case of an abort, the crew may return

to the LEO node to await retum to the ground.

(4) All-propulsive return to SSF or LEO - The all-propulsive retum requires a

3,300 m/s AV main propulsion system burn for direct insertion into the

required LEO. After Earth orbit capture, the vehicle is either refurbished and

stored at the LEO node or returned via the Shuttle to the ground. The crew

is retumed to ground via the Shuttle or a PLS.

For this option also, the vehicle must be able to perform the Earth orbit

capture and return to a stable LEO orbit. With a LEO node available, the

crew may retum to the LEO node to await retum to the ground.

(5) Recommendations - A summary of the Phase 1 and Phase 2 findings

concerning earth return options are shown in Figures 1.3.3-13 and 1.3.3-14,

respectively. Even though the LTS would be a golden opportunity to

demonstrate aerobraking before committing to an aerobraked Mars mission,

our data indicates it would be significantly cheaper operationally (and safer)

to return to the launch site using a semiballistic capsule with high glide

parachutes, rather than stop in LEO and wait for pickup.

NEW D658-10010-1 51



BOriNG

NEW D658-10010-1 52



!i|_ o _'=gl = -=

§_1-ssew

NEW D658-10010-1 53



BWNB

d. Suborbital Staging at Launch - One method of increasing delivered payload

capability from a launch vehicle is to deploy the upper stage suborbitally, taking

advantage of the typically higher upper stage specific impulse. Historically, upper

stages that had an Isp comparable or higher than that of the launch vehicle have been

deployed suborbitally to maximize payload capability. Examples include the SIVB

stage and Centaur upper stage. Lower Isp upper stages such as the IUS typically have

been launched on orbit and do not benefit as much from suborbital deployment.

Because the STV/LTS designs are assumed to have high Isp and relatively high

thrust, they could benefit from suborbital deployment based on these criteria.

Optimization of the AV split between launch vehicle and LTS over a range of upper

stage thrust levels, for four of the launch vehicles potentially available for SEI, is

shown in figure 1.3.3-15. Higher upper stage thrust levels result in larger staged

weight, with more ascent delta-velocity provided by the upper stage, and more mass

available for the TLI burn. For a ground-based, 2.5 stage concept, the effect of

increased upper stage (in this case, the TLI stage) thrust on performance is shown in

figure 1.3.3-16. In general, increased upper stage thrust results in large increases in

upper stage propellant, but yields only small delivered cargo improvement. The cost

optimum TLI stage is probably the one with five RL10 engines, since it can deliver as

much payload as the far larger J2 powered stage, but has engine out capability.

e. Launch Vehicle Integration - Vehicle integration for launch depends on

whether the flight crew is launched aboard the vehicle, the number of flight elements

included in each launch, the amount of vehicle on-orbit assembly required, and the

degree of flight element reusability, as shown in Figure 1.3.3-17. For example,

designs that include a crew aboard the launch vehicle require the crew module to be

at the top of the stack in order to allow launch escape. The number of flight elements

can also affect the launch configuration in the case of a single-launch system. If a

separate lunar lander and transfer stage are launched together, as on Apollo, an on-

orbit turn-and-dock manuever must be performed to allow crew transfer between

stages.

On-orbit assembly of an aerobrake or other flight element also affects the integration of

the STV in the launch vehicle. The launch configuration may be a series of cargo
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containers rather than a flight vehicle. Reusable systems requiring on-orbit assembly

would be similar, with flight elements launched separately and assembled on orbit.

Vehicles with fewer stages, less on-orbit assembly, and that don't require lunar orbit

rendezvous present the fewest launch packaging problems.

1.3.4 Reusability Options

One method of reducing recurring costs and increasing vehicle performance is to

reuse portions of the vehicle for subsequent missions. Key issues associated with

reuse are; the refurbishment of reusable flight elements in space, and the refilling of

reusable tanks in zero-g conditions.

a. Ground-Refurbishment - In this option, only the crew module is reused. It is

returned to the ground, either ballistically or in the Shuttle payload bay, and is

refurbished for subsequent reuse.

b. Ground and SSF refurbishment - A variation of the ground refurbishment

approach has a portion of the flight vehicle returned to the Space Station and

refurbished and refilled, while the labor-intensive refurbishment of the crew module

takes place on the ground. In this case, the reusable stage returns to the station either

by aerobraking or ail-propulsively. This option reduces the amount of inert weight to

be launched to orbit, and saves high-cost avionics and propulsion elements.

c. Space Station Refurbishment - In this option, both the core stage and crew

module are returned to the station, refurbished, and reused. This reduces even further

the inert weight launched to orbit, and again saves high-cost avionics and propulsion

elements.

d. Reusability Recommendations - Because vehicle reusability corresponds to

the method of launch, the findings in Phase 1 correspond to the ETO options summary

shown in Figure 1.3.3-3. These results showed that ground-based refurbishment of

the crew module with a two-launch rendezvous and dock scenario had the lowest cost,

the least risk, and the best mission capture. For this reason, phase 2 of the study didn't

deal with space-basing.
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1.3.5 Number of Stages

Typically, a multi-stage system exhibits better performance than a single-stage system

by dropping inert weight after propellants are expended. That inert weight may be

either full stages with propulsion systems, or drop-tanks with no propulsion. The

benefits of staging are evident in improved performance, but increase vehicle

complexity and cost. For the design of a lunar s'rv, the number of stages may range

from a single stage up to four stages (e.g. Apollo). For the purpose of consistent

nomenclature, flight elements with both propulsion and tankage are considered full

stages., and propellant drop-tanks (one or more) are considered as a half stage.

An exception to the performance benefit of increased number of stages is the case of a

multi-stage lunar lander, in which the addition of an ascent stage does not necessarily

increase lunar-delivered cargo, due to the significant added inert weight of the

propulsion system. In this case, the use of lunar drop-tanks might be better than a

separate ascent stage.

a. Tank Drop or Staging Options - One issue associated with staging is

disposal of the staged flight elements. Figure 1.3.5-1 shows typical staging options in

an expendable concept, stage or drop-tank disposal can be accomplished by reentry

into the Earth atmosphere, by being boosted out of the Earth-Moon system, by impact

on the lunar surface, or by being left on the lunar surface. In a reusable mode, stages

may be left in LEO or LLO for refilling and reuse. In this case though, the propellants

must still be transported.

b. Staging recommendations - For space-based missions, the best mission

performance occurs with staging events following the first and second burns (TLI and

LOI for options using LOR, and TLI and lunar descent for lunar-orbit-direct options). For

ground-based missions, the best performance occurs with staging following TL! for

both lunar-orbit-rendezvous cases and and lunar-orbit-direct cases, and following

lunar descent (drop-tanks only) for the lunar-orbit-direct cases. High performance

penalties occur for no staging events on lunar-orbit-direct vehicles and for lunar ascent

droptanks on LLO node vehicles.

From a cost point of view, minimum cost sytems are those that minimize the number of

stages, due to added development and increased recurring costs (thrown-away

engines) of multi-stage vehicles. The lowest cost, best performance designs minimize
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the number of full stages, but still expend inert weight by using expendable drop-

tanksets. A summary of the Phase 1 and Phase 2 findings concerning staging options

are shown in Figures 1.3.5-2 and 1.3.5-3, respectively.
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1.3.6 Crew Module Design

The U.S. Space program has a history of manned spaceflight extending back 30

years. Past and proposed future space missions have specific requirements that

influence crew module design, as shown in Figure 1.3.6-1. The current STV study has

focused on a return to the moon, with a purpose of going back to stay. With this

purpose, several factors influence crew module design, including mission function,

crew safety, and crew comfort.

a. Crew Module Type - Crew module function and crew safety considerations

drive the type of crew module used. Options include a single crew module, a hybrid

crew module, and a dual crew module. The differences in crew module functionality

are shown in Figure 1.3.6-2.

With a single crew module, the crew remains in one crew module throughout the

mission. That crew module must perform all life support functions and ensure crew

safety during all mission phases including lunar transfer as well as the lunar

excursion. The hybrid crew module design includes two crew modules that are both

used for lunar transfer, with only one being used for the lunar excursion portion of the

mission. This option requires the use of lunar orbit rendezvous, leaving one crew

module in orbit during the lunar stay. The third design case is a dual crew module

system, where separate transfer and excursion modules are designed for the distinct

mission phase requirements. This case also requires lunar orbit rendezvous, and only

the transfer crew module is used for the return to Earth (i.e. like Apollo).

A performance and cost comparison between the crew module types is given in Figure

1.3.6-3. The recommended crew module arrangement is a single crew module

design, due to the high cost of additional crew module development and the

requirement for LOR with its limited abort options.

b. Crew return options - Upon return from the moon, the crew module with

crew may be designed to reenter Earth atmosphere and return to the ground, or may

return to LEO following an aerobraking maneuver and rendezvous with a Shuttle or

PLS to return the crew to the ground.

In the ground-return case, the objective is to return the crew module as near to the

refurbishment facility as possible and with the least amount of damage to reduce

NEW D658-10010-1 64



,4POfJ.AV',m'

S =a,.. _v

_ _ _'8 "8

0

.,I

NEW D658-10010-1 65



BOfJArG

Q
I

J |:

_===,.o _'_

•
,.I --I

_= I
._=
o

__o_
.= ='_ .=

-,-_ ==_
=,,..

!--.

¢,o

_=_

NEW D658-10010-1 66



BOfJAIrG

NEW D658-10010-1 67



recovery and refurbishment costs. This may be done by designing the module with

sufficient L/D to accurately target a land landing site and providing the vehicle with

sufficient impact attenuation to reduce damage. Two shapes studied to provide IJD

include a modified Apollo-shape and a biconic shape.

For the LEO-retum option, the crew module must have rendezvous and dock capability

to dock with the Shuttle or SSF, but does not require the reentry TPS. However, the

crew module will need to carry extra life support consumables for a contingency LEO

stay, in case they return early due to an emergency or theShuttle launch is delayed.

c. Crew launch - The crew for a lunar STV mission may be launched either

aboard the STV launch vehicle or aboard the Shuttle or PLS and then transferred to

the lunar vehicle. The performance and cost impacts associated with launching the

crew aboard the launch vehicle are given in Figure 1.3.6-4. The cost trade is

essentially even if it is assumed the STS launch is paid for by another user and the

STS drops off the lunar crew before of after their scheduled mission. However, we

thought it more likely a scheduled STS launch would be required at least half the time

and assessed cost penalties accordingly. In the case of a manned launch of the

heavy-lift vehicle, provisions must be made for crew safety in the case of a launch

abort. A launch escape system similar to that used on Apollo could be provided for

launch aborts up to 400,000 ft, after which the upper stage could provide sufficient

escape propulsion. The crew module must also be designed to withstand water

impact loads following a launch abort.

d. Habitability - Crew module habitability is driven by beth crew comfort and

mission functions, based on mission duration and crew size. In general; as the

duration of a mission increases, the accessible volume of the crew module must also

increase to provide additional functions, as shown in Figure 1.3.6-5. A historical

perspective of crew module volume per person as a function of mission duration is

given in Figure 1.3.6-6, as well as curves representing what is felt to be tolerable and

optimum values. For lunar missions in which the crew lives in a separate lunar

outpost, the transfer and excursion crew modules may have volumes similar to the

Apollo crew modules.

If the crew is to live in the excursion crew module for an extended period of time, the

crew module may have to be increased in size to meet habitability limits. Variations in
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lunar crew module mass with increased inhabited duration is shown in Figure 1.3.6-7

for three cases: Case one is an emergency-only stay in which the crew module volume

and equipment stays the same as the transfer stay module, Case two is where the

volume remains the same and the equipment only changes, and Case three is where

both equipment and volume change to meet NASA STD-3000.

1.3.7 Lunar Base Support

a. Propellant Boiloff - One of the disadvantages of high-performance cryogenic

propellants is the associated boiloff during long-duration missions, especially on the

lunar surface. In the absence of a lunar surface support system, these losses can

significantly impact the performance of the vehicle. Several options to minimize the

impact of propellant boiloff were evaluated including; on-board cryogenic refrigerators,

improved thermodynamic vent systems and vapor-cooled shields, reduced heat leak

paths, additional propellant tank insulation, a reflective lunar surface 'tarp' to minimize

reflected heat from the lunar surface, and the use of storable propellants on a separate

ascent/return stage.

A comparison of system mass for several types of LH2 refrigerators in Figure 1.3.7-1

shows that even the lightest system requires a significant mass to reliquefy hydrogen

and would be prohibitive if carded on board the vehicle. LO2 refrigeration may be

more likely, as the peak cooling requirement for LO2 is around 30W, and refrigerator

masses can be more than an order of magnitude smaller. The reference system for

the Phase I lunar base was a surface-based refrigeration system of the Vullimier type.

Combinations of MLI, TVS, vapor-cooled shields, refrigeration, and reflective surface

cover have been compared with the lunar surface support case to arrive at a minimum

mass solution to minimize surface boiloff in the absence of lunar surface support. The

various boiloff-control options are shown plotted in Figure 1.3.7-2 as cargo mass

impact versus time on the lunar surface, compared to the reference. The minimum

mass system from 1 to 65 days includes 80-layer MLI and optimized tank-support

struts. At 65 days, the payload degradation is approximately -755 kg. From 65 to 180

days, the minimum mass system includes 80-layer MLI, optimized struts, vapor-cooled

shields, and an on-board LO2 refrigerator. At 180 days, the payload degradation is -

1154 kg. The storable ascent stage option represents a payload degradation of -7900

kg.
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1,4 STV Study Results and Observations

This section summarizes the study results and compares those results with the

"conventional wisdom" prevalent before the study was completed. In many cases the

results are somewhat unexpected.

1.4.1 Trade Study Results

al Mission Performance

(1) Expectations - In any space transportation system, elimination of vehicle

inert weight or improvement in engine performance results in increased

vehicle performance (measured as the ratio of payload capability to initial

total mass), in the STV study phase 1 and phase 2 subsystem and system-

level trades, any option that reduced overall inert weight or increased

engine performance was expected to result in significant increases in

mission pedormance. The use of higher Isp engines, multiple staging, lunar

orbit rendezvous (LOR), and on-orbit vehicle reusability were all thought to

contribute to mission performance improvement.

(2) Results - To some extent, the above expectations were proven correct,

but with some notable exceptions. Many of the trade options produce only

marginal improvements in performance. For instance, a comparison of lunar

performance (21 piloted missions, 418 t total lunar cargo) for the phase 2

cost-optimum concept (ground-based, suborbital-staged, 2.5 stages, lunar-

orbit direct, single crew module), the best performing concept (Space-based,

LEO-assembled, 2.5-stage, lunar-orbit rendezvous, dual crew module), and

a poor-performing concept (ground-based, suborbital-staged, 3.0-stages,

lunar orbit direct, single crew module, storable ascent propellant) is shown

in Figure 1.4.1-1. Also shown is the reference concept with a reduced

piloted flight model (10 piloted missions, 418 t cargo), and a reduced cargo

model (21 piloted missions, 200 t cargo). The greatest discriminator in

overall system performance is the mission model change (25% change in

performance), rather than the change in system design (15% change in

performance).
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bQ Cost Trades

(1) Expectations - The normal expectation of most engineers and managers

is that changes in STV candidate design performance and weight would

significantly increase or decrease the relative life cycle cost scoring. This

perceived notion comes from the knowledge and observation that the

majority of hardware descriptive inputs to parametric cost models are

generated from mass properties estimates of weight and volume (this is no

longer true for avionics or primary propulsion engines; in general, vendor

planning estimate throughputs are more accurate.)

(2) Results -The independent STV system cost trade results from the phase

I and II cost analysis efforts performed by both STV study contractors

(Boeing and Martin Marietta) proved this expectation to be incorrect.

Peformance and weight changes for the minimum STV functions (to a

consistent set of NASA-specified lunar mission requirements) do not directly

equal cost, but changes in technology maturity level selections and

hardware part count (flight element and test quantities counts) do

significantly change vehicle development cost estimates.

The pie charts in figure 1.4.1-2 depict STV vehicle cost estimate results, in

relative constant-year dollars, for two competing STV designs. The

subsystems hardware for avionics, life support, primary electrical power, and

basic fuel supply tankage (usually the tanks are resized by small changes to

diameter or barrel length) normally do not change their function significantly

(see pie charts comparison.) The small changes and reallocations of

functions to different stage flight elements do not influence the overall life

cycle cost (in realtive dollars) more than 5 to 15 percent (most planning

estimates of large aerospace programs like STV are only accurate to plus or

minus 25 percent.)

Performance limits (and the resultant cost estimate range impacts) are, in

reality, dictated more by the mission profiles, mission payload delivery

requirements (number and type of sorties), and launch booster Earth-to-orbit

capabilities assumed for STV lunar (or other) mission accomplishment than
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by varying STV vehicle design characteristics. In the STV study, we found

that the system life cycle cost is significantly influenced by basing changes

(space or ground), ETO booster changes (number of flights, mix, and size),

hardware reusability/expendability, and number of crew module system

design decisions (in that order.)

CQ Infrastructure

(1) Expectations - The availability of a new large launch vehicle capable of

performing a lunar mission in a single launch was expected to provide major

operational cost savings to the lunar exploration program. The reductions

were thought to come from reduced hardware expended and the reductions

in mission planning and operations.

(2) Results - The $ 7B delta system acquisition cost penalty incurred with the

220 mt class booster overwhelmed the operational cost savings for the

relatively few missions in the current lunar exploration scenario. The 220 mt

booster can be justified relative to the reference NLS booster only if the Mars

exploration missions are included in the costing. It probably makes more

sense to develop a new low launch cost vehicle which can support SSF with

a single launch, the lunar exploration mission with two launches, and leave

the Mars mission for the next generation launch system.

dl Risk / Safety

(1) Expectations - Having already flown men to the moon and retumed them

safely to earth it was expected that risk and safety would not generate major

design changes in the Apollo-like S'I'V/LTS concepts.

(2)Results - The need for solar-storm radiation protection and "anytime"

abort-capability increased the total weight in LEO by roughly forty tons

relative to Apollo, despite improvements in propulsion and structures.

eJ Technology
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(1) Expectations - A mission as difficult as roundtrips to the moon would

surely benefit from performance enhancing technologies such as

aerobraking and advanced high pressure engines.

(2) Results - Neither aerobraking nor the Advanced Space Engine (ASE)

proved to be cost effective for the relative few missions in the lunar

exploration model. The performance gains could not buy back the large

DDT&E expenditures over the small number of flights. It would be even

worse with discounted dollars.

1.4.2 Evaluation Process Lessons Learned

1

In the current operating environment, cost will be the primary design driver. Design-to-

cost is difficult, but possible, within the context of this type of study. For instance, we

found that areas of significant cost change do occur when less hardware is expended

in the mission (lower production costs) and the costs of space-basing refurbishment at

Space Station Freedom are deleted (saves facilities front end costs and in-space

operations labor costs.) Therefore, if the delivery mass and flight rates stay constant

for lunar missions, vehicle launch integration and number of element docking/fuel

transfer functions increase cost more than optimizing the vehicle subsystems

(decreasing engine quantities per vehicle, resizing tanks, reducing redundancy, etc.)
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2. STV Phase 1 Summary

Phase 1 of the STV Concepts and Requirements study included STV concepts

designed for specific lunar missions but capable of performing other Civil Needs Data

Base (CNDB) missions, with few constraints on required ETO capability. This phase of

study had two distinct study segments. During the first, a 90-day study, support was

provided to NASA in defining a point-of-departure STV. The resulting STV concept

was performance optimized with a two-stage LTV/LEV configuration.

After the March 1990 Interim Review (IR#2), the effort was expanded to perform a full

architectural trade study with the intent of developing a decision database to support

STV system decisions in response to changing SEI infrastructure concepts. Several of

the architecture trade studies were combined in a System Architecture Trade Study. In

addition to this trade, system optimization and definition trades and analyses were

completed and some special topics were addressed. The following summarizes the

Phase 1 findings, specifically the relationships between requirements and design

characteristics of four reference concepts:

1) 90-day study reference Multi-launch, Space-based, 2.0 stage vehicle.

2) Multi-launch, Space-based, 1.5 stage vehicle

3) Dual-launch, Ground-based 1.5 stage vehicle,

4) Single-launch, Ground-based 1.5 stage vehicle

This section also summarizes the architecture study methodology and trade resuolts.

2.1 Design Driver Assumptions

2.1.1 Available Funding Resources

Funding requirements were not constrained for this period of the study, so life cycle

cost became a discriminator between concepts.
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2.1.2 Space Program Infrastructure

The infrastructure required by the STV concepts studied during this phase of study

includes ground facilities, launch vehicles, and LEO facilities.

a. Ground Facilities -All STV concepts willl use the facilities of and launch

from the Kennedy Space Center. Any differences in ground facilities will result from

the size of flight elements launched. In all cases, propellant tanks, crew modules,

lunar payloads, and vehicle stages must be assembled, checked out, and integrated

into the launch stack. Space-assembled equipment must be preintegrated on the

ground for fit and function, then disassembled and launched, requiring a unique

facility.

b. Launch Vehicles- All STV concepts will require some type of HLLV. The

size of the launch vehicle required may vary from a 71 metric ton booster for a

multiple-launch, LEO-assembled vehicle to a 250 metric ton booster for a single-

launch vehicle. In all of these HLLV configurations, the STV will require propellant fill,

drain, and vent (cryogenic hydrogen and oxygen), ground power and thermal

conditioning, and telemetry and command feedthrough. Possible launch vehicle

options in this phase of study included the Shuttle-C, ALS, and ALS Heavy-lift

derivatives, shown in Figure 2.1.2-1.

c. LEO Interfaces -The requirements for LEO infrastructure are the most

significant differences between vehicle concepts studied. Space-based vehicles have

extensive LEO interface requirements, including a node that will have the capability to

assemble the vehicle, such as Space Station Freedom. As such, the node will have to

be able to provide propellant handling and conditioning capability as well as extensive

vehicle refurbishment capability. A decription of the proposed SSF facilities functions

required is shown in Figure 2.1.2-2.

2.1.3 Available Technology

a. Initial STV Technology Survey - The technologies applicable to STV lunar

mission applications were researched and the survey results were initially presented

at the phase I STV study Interim Review (IR) #2 briefing. The survey included military

(U.S. Department of Defense) hardware and software technology data sources, as

well as European and NASA technology data sources. The emphasis at IR#2, and
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subsequent IR briefings, was to select technology areas of innovation which improved

LTS vehicle survivability, stay time, fluid and docking capabilities, vehicle operation

autonomy (flight and housekeeping/test), and also improved crew comfort and safety.

b. STV Technology Summaries - Later S'IV study technology presentations

and studies attempted to provide the customer with technology development and

application schedule plans. The Boeing, Martin, NASA study team representatives

went even further at the end of phase I to refine the STV/LTS/Mars Transportation

System technologies requirements subject matter into an overall technology plan for

MSFC and the NASA level Ii Space Exploration Initiative (SEI) Office of Technology at

Johnson Space Center, Houston, Texas. Mr. Fred Huffacker of NAS MSFC

managed the joint technologies summary activities in concert with the STV study office

at MSFC.

A sample of these standardized forms for the level II office input from the space

transportation system studies completed in 1990 is presented in Figures 2.1.3-1

through 2.1.3-6. These forms were completed by the cooperative NASA/contractors

team for all critical STV subsystems design and technology application areas. The

real bonus is that they provide the space transportation technical community with a

good consensus-generated summary of forecasted technology requirements. The

technology data was generated by consensus from four STV-related (and yet

independent) NASA study sources and design preference points of view.

2.1.4 Lunar and Non-SEI Mission Requirements

Specific mission requirements including SEI requirements are given in Figure 2.1.4-1,

and include piloted and unpiloted missions drawn from the 1989 Civil Needs

Database (CNDB). Of the 10 mission types, 3 are piloted and must retum the crew.
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2.2 90-Day Study LTV/LEV Reference Concept

The 90-day study reference concept consists of two major elements, as shown in

Figure 2.2-1. One portion, a reusable cryogenic transfer vehicle with a reusable

aerobrake, crew module, and two pairs of expendable drop-tanksets, is based and

refurbished at the LEO node. The other portion, a reusable lunar excursion vehicle,

with crew module, is based in low lunar orbit (LLO). Both transfer vehicle and

excursion vehicle have four main engines, allowing engine-out capability during all

mission phases.

2.2.1 System Design and Operation

For initial piloted missions, the transfer vehicle, excursion vehicle, aerobrake, and

crew modules are launched to the space station or LEO node aboard several heavy-lift

launch vehicles, assembled, and the transfer vehicle is fueled from a propellant depot.

The drop-tanks are launched fully loaded aboard two heavy-lift launch vehicles,

integrated with the transfer vehicle, and then the crew and cargo are launched aboard

a shuttle to the completed stage. The transfer vehicle returns to the LEO node after

each mission, where it can be used for subsequent lunar missions or for other non-

lunar missions.

The lunar mission sequential configuration of the vehicle is depicted in Figure 2.2.1-1.

In a steady-state mode, after leaving the Space Station, the TLI drop-tanks are

jettisoned following the TLI burn, and the vehicle performs a lunar-orbit insertion (LOI)

burn to circularize into a circular lunar orbit. The transfer vehicle then performs a

rendezvous with the lunar excursion vehicle and refills the LEV tanks from the second

set of drop-tanksets on board. The crew enters the excursion crew module, the

excursion vehicle separates from the transfer vehicle, and descends to the lunar

surface.

Upon arrival on the lunar surface, the cargo is unloaded, the vehicle is hooked up to

lunar surface support equipment, and the crew moves to the lunar habitat for the lunar

stay. At the end of the lunar stay, the crew loads retum cargo and boards, checks out

the vehicle, then the excursion vehicle ascends and returns to LLO, where it

rendezvous' with the transfer vehicle. The crew moves back into the transfer crew

module, the stages separate, and the transfer vehicle jettisons the second pair of drop-

tanksets and returns to Earth orbit, utilizing an aeromaneuver to insert into LEO and
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rendezvous with the Space Station, where it is inspected and refurbished for the next

flight.

For the unpiloted mission thetransfer vehicle with an expendable excursion vehicle is

flown without crew module and aerobrake on a one-way delivery, and the excursion

vehicle is left on the lunar surface with the descent tanksets after landing.

2.2.2 Flight Element Description

a. Lunar Transfer Vehicle - The transfer stage has an external load-bearing

body structure with structural interfaces to the crew module, aerobrake, cargo, and

drop-tanks. The body structure is a cylindrical graphite/epoxy honeycomb structure

with internal stabilizing rings which forms the backbone of the structure. An aft thrust

structure of graphite / epoxy design distributes thrust loads from the main engines to

the vehicle and resists lateral engine gimbal loads. The thrust structure has four

engine mounting pads and associated thrust vector actuator supports and includes

struts for lateral load stabilization.

The transfer stage includes one LO2 tank and one LH2 tank with elliptical end-domes

and associated propellant aquisition devices.

(1! Droo-tanksets - The current space-based tanksets include Aluminum-

Lithium main tanks with composite honeycomb sandwich intertanks that

distribute launch loads from an aft launch vehicle interface ring and graphite

/ epoxy transfer vehicle interface trusses that permit on-orbit transfer vehicle

integration and provide structural support during the mission. Both TLI and

LOI drop-tanksets are integrated about the sides of the transfer vehicle

below the aerobrake and require graphite / epoxy support trusses with

titanium fittings, sized for transfer and orbit insertion loads, as well as

deployment and release fittings for expending the empty tanks.

-The space-based aerobrake is a rigid space-assembled

shell structure of high-temperature graphite/polyimide sandwich panels

affixed to a system of graphite/polyimide Iongerons and frames and covered

with high-temperature thermal protection ceramic tiles. The aerobrake is
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launched in a folded position, as shown in Figure 2.2.2-1 and assembled

and integrated at the Space Station.

The graphite polyimide cOnstruction allows the aerobrake structure to run

hotter than would be allowable with an aluminum structure (650 ° F for GR/PI

vs. 350 ° F for aluminum). Along with this higher temperature capability, the

thermal expansion of the graphite polyimide can be tailored to match that of

the overlying ceramic TPS, eliminating the need for a strain-isolation pad

under the tiles.

(3) Crew Module - The transfer crew module consists of a pressurized

primary shell with internal bulkheads and partitions, windows for docking

maneuvers, and two hatches for EVA and crew transfer. The crew module

design makes use of SSF technology and design, and is 4.45 m diameter,

3.96 m long, and includes 37.6 m3 free volume.

bl Lunar Excursion Vehicle

(1) Lander- The excursion stage has an external load-bearing structure

with structural interfaces to the crew module and cargo. The body structure

includes twelve major Iongerons, a series of interior stabilizing struts,

forward and aft stabilizing struts, and exterior closeout panels. The graphite/

epoxy Iongerons transfer primary loads and form the backbone of the

structure. Eight of the Iongerons include interface fittings for the landing

gear and cargo attachment The stabilizing struts are graphite / epoxy struts

of varying lengths and sizes with titanium end fittings. The exterior and

lower closeout panels are sandwich panels with honeycomb core and

graphite / epoxy face sheets. These panels provide structural stiffness as

well as shielding for the excursion vehicle tanks.

The thrust structureis of graphite I epoxy design, with four engine mounting

pads and associated thrust vector actuator supports. It also includes struts

for lateral load stabilization. Lunar landing gear includes four sets of landing

gear that are deployed during initial replacement flight lunar transit and left

deployed while the vehicle is stored in LLO, ready for the next mission.
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Figure 2.2.2-1 Aerobrake Packaging for Launch
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The excursion vehicle tanks are made of Aluminum-Lithium and include a

single LO2 tank in the center, and four LH2 tanks around the periphery, each

with associated propellant aquisistion devices. The tanks contain enough

propellant for the lunar landing and lunar ascent to LLO.

(2) Crew Module- The excursion crew module consists of a pressurized

primary shell with internal bulkheads and partitions, windows for landing

and docking maneuvers, and two hatches for EVA and crew transfer. The

design of the crew module makes use of SSF technology and design, is

4.45 m diameter, 2.8 m long, and includes 22.8 m3 free volume.

2.2.3 Subsystem Description

a. Main Propulsion - The selected space-based STV main propulsion system

is a LO2/LH2 system and uses four advanced expander-cycle engines with a vacuum

thrust of 15,000 Ib per engine, and an assumed specific impulse of 481 seconds. It

includes the engines with electromechanical actuation, as well propellant delivery,

pressurization, fill, and vent systems.

b. Reaction Control - The reaction control system is a gaseous 02 / gaseous

H2 system with an assumed specific impulse of 410 seconds. It includes four

GO2/GH2 thruster modules on each stage and associated accumulators,

pressurization, and control.

c. Electrical Power - The electrical power system features redundant O2/H2

fuel cells fed from accumulators filled from the vehicle main propellant tanks, as well

as distribution and control units and associated wire harnesses.

Fuel cell reactants are drawn from accumulators included in the Reaction Control

Subsystem. The redundant accumulators are sized to provide oxygen and hydrogen

reactants for both RCS and EPS functions for a period of time needed to fill the other

accumulators. Once filled, the reactants are isolated and heated to supercritical

pressure. Reactants are then drawn off to supply the fuel cells through a system of

CRES manifolds.
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For peak power loads during main engine actuation, three rechargeable Nickel-

Hydrogen batteries are included in the power supply to supplement fuel cell power.

The batteries are sized to provide a total of 5.0 kilowatt-hours of power to the main

engine actuators.

The power distribution system consists of power distribution and control assemblies,

inverters, and remote switching devices that interface with other vehicle subsystems

and external power supplies.

d. Avionics -

(1) Guidance and Navigation - Provisions for lunar mission operations,

including rendezvous, docking, and lunar landing, with built-in redundancy

for piloted operations.

(2) Communication and Data Handling - Provisions for communication,

vehicle health maintenance, and data handling, with audio/video interfaces

for piloted operations and instrumentation for drop-tank monitoring and

control.

(3) Displays and Controls - Provisions on the crew modules for limited crew

control and status monitoring of the vehicle during critical phases of the

mission.

e. Environmental Control / Life Support - Environmental Control and Life

Support (ECLSS) includes provisions on the crew module for atmosphere supply and

control, internal equipment cooling, as well as metabolic and equipment heat

rejection. Figure 2.2.3-1 shows a life support hardware schematic similar to the Orbiter

system that meets the requirements of all STV configurations. The schematic reflects

the fault tolerance levels required for critical equipment, with triple critical system

components rather than separate triple systems.

The system is an open loop life support system, with no regeneration of either

atmosphere or water. ECLSS functions, as well as the relationship to other vehicle

functions is given in Figure 2.2.3-2. Since an adequate supply of water is provided as
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by-product of the fuel cell power supply system, only minimal water stores and supply

tanks are required for STV, and recovery of cabin humidity condensate is not required.

Atmospheric gases are supplied from storage and from the fuel cell reactant supply

accumulators, and carbon dioxide is removed from cabin air by replaceable LiOH

canisters.

An active thermal control (ATC) loop is incorporated into the environmental control

system, with coldplatas for electronic equipment cooling, a cooling water loop for cabin

thermal control, a Freon loop to cool vehicle heat loads, various equipment heat

exchangers, and a variety of heat rejection devices designed for specific mission

phases. Heat rejection devices include ground support equipment (GSE) heat

exchangers, water flash evaporators, and space radiators. Prior to launch, heat is

rejected through a GSE heat exchanger. During launch, a passive thermal sink for

initial liftoff and a water spray boiler for above 140,000 ft are employed until the vehicle

separates from the launch vehicle, after which triple-loop metallic radiators are

deployed to reject heat. The water spray boilers may also be used to supplement the

radiators during peak in-space heat load periods.

f. Personnel Provisions- Personnel provisions include food, water, and waste

management systems, as well as fire detection and crew furnishings. The food

management system provides for the storage, preparation, and preservation of food for

the crew. The food is shelf-stabilized and is prepared using warm water and heated in

a convection oven, similar to the shuttle.

The water management system provides for potable water during the mission duration,

and includes a water storage tank with water drawn from the fuel cell by-products,

water dispenser, as well as tanks with a contingency water supply. The waste

management system for both space- and ground-based vehicles includes a

partitioned zero-g commode / hygiene station with waste storage tank and pre-

moistened wipes for personal hygiene.

Crew furnishings include flight seats, emergency medical / health provisions, and

personal equipment storage provisions. The flight seats, similar to those on the STS

Orbiter, provide restraint and impact attenuation for all phases of flight and can be

removed and stowed during flight.
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2.2.4 Performance

The reference vehicle concept can either deliver 13,800 kg cargo to the lunar surface

in a steady-state piloted mode or 42,300 kg in a cargo delivery mode. With this cargo

split, a total of 418 tonnes of cargo is delivered to the lunar surface over 21 piloted and

4 cargo-only missions. The TLI drop-tanksets used in the cargo-delivery mode are

slightly larger than those for the piloted mode to take advantage of extra launch

vehicle capability.

Misson performance of the two stage 90-Day study reference vehicle in both a cargo-

delivery and steady-state piloted mode is given in figure 2.2.4-1.

SUMMARY MASS

CREW/CARGO
CREW I SUITS
LUNAR CARGO

TANKSETS
TANKSET #1, #2
LOI PROPELLANT
LEV PROPELLANT
TB PROPELLANT

TARKSEI"#U4
TU PROPELLANT

LTV (REUSABLE)
AEROBRAKE
TRANSFER CAB
PROPULSION MODULE

LEV
LANDER
EXClJRglCN GAB

LAUNCHED MASS
ASSEMBLED MASS IN LEO, LTV
LLO ARRIVAL, LTV
START LUNAR DESCENT, LEV
LUNAR LANDING, LEV
LUNARTAKE-OFF, LEV
START TEl, LTV
AEROMANEUVER, L'FV
EOM: LTV AT SSF
EOM: LEV AT LLO

F/gum 2.2.4-1

REFERENCE REFERENCE
PILOTED CARGO

STEADY-STATE DELIVERY

768
138OO

88O8
17500
23030
S22S

6033
86374

2823
5824
4721

5797
3581

156556
169_.4
61296
46985
3O23O
16803
19O72
15747
14710
9878

14568

141988

13368

9378

0
423OO

3788
14
37260
0

6110
94,9O7

0
0
0

8864
0

190888
190888
190888
86124
496O0

N/A
N/A
N/A
NIA
NIA

42300

142024

6564

Reference VehiclePerformance
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2.2.5 Program Cost Estimates

Preliminary STV study estimates of the two stage 90-Day Study reference vehicle

were based on conceptual design definition information contained in figure 2.2.5-1.

A Space Exploration Initiative level work breakdown structure (WBS) was provided to

the study contractors in order to develop a complete, indentured WBS dictionary for

STV Lunar Transportation System (LTS) mission and other STV mission life cycle cost

estimates. The WBS dictionary (ref.: Boeing STV Phase I Final Report, Volume III,

Book 2) was tailored to be expandable to handle STV/LTS designs of one or more

stages. Figure 2.2.5-2 illustrates the summary, initiative level WBS provided by NASA

used to develop LCC estimates.

Figure 2.2.5-3 represents the only specific summary cost data on the reference vehicle

presented during the study. The figure pie chart shows the areas of technology

emphasis based on the ratio of each subsystem area to total hardware development

cost. Later trade studies provide MSFC with a summary LCC estimate for the

reference vehicle. The summary LCC for the reference vehicle was presented by the

Boeing team at the IR#3 briefing (ref.: Volume II, page F-14) in June of 1990. The

Figure 2.2.5-4 Crew Module Trade comparison chart contains the reference LCC

summary. The reference vehicle LCC summary is the second bar to the right of the

origin. The LTS 90-Day Study design reference vehicle system for STV was coded

SB2-2.5D because it is: space-based (SB); uses lunar orbit rendezvous (2); has

two stages - transfer and excursion (2), with drop tanks (.5); and has reusable dua/

crew modules (D).
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2.3 Space-Based Multi-launch Concept

The selected space-based concept is based at the Space Station Freedom or other

LEO node and is a cryogenic vehicle with a reusable core stage and two pairs of

expendable drop-tanks, as shown in Figure 2.3-1. For piloted lunar missions, the core

stage is flown with landing gear, a crew module, and a rigid, space-assembled

aerobrake. For unpiloted lunar cargo-delivery missions, the core stage is flown in an

expendable mode without the crew module and aerobrake. The drop-tanks for both

missions include a pair of tanksets holding trans-lunar injection propellant and a pair

of tanksets holding lunar-descent propellant. The vehicle has six main engines,

allowing two engine-out capability during all mission phases.

2.3.1 System Design and Operation

For initial piloted missions, the core stage, crew module, and aerobrake are launched

empty to the space station or LEO node aboard a heavy-lift launch vehicle, assembled,

and then fueled from a propellant depot. The drop-tanks are launched fully loaded

aboard three heavy-lift launch vehicles, integrated with the core stage, and then the

crew and cargo are launched aboard a shuttle to the completed stage. The core stage

retums to the LEO node after each mission, where it can be used for subsequent lunar

missions or for other non-lunar missions.

The lunar mission sequential configuration of the vehicle is depicted in Figure 2.3.1-1.

The aerobrake must be launched in sections to fit in the launch shroud and must be

assembled on-orbit and then attached to the core vehicle with the crew module. The

crew module is offset from the vehicle centerline to provide lunar landing visibility and

cg offset for the aeromanuever, as shown in Figure 2.3.1-2.

During the mission the TLI tanks are dropped after the TLI bum, and the vehicle

descends to the lunar surface following lunar injection. During descent, the core

ascent tanks remain full, balancing the cg to the centerline during the critical descent.

For landing, the crew can view two landing pads and the horizon over the top of the

cargo pallet. Upon arrival, the descent tanks are removed and the cargo is unloaded,

the vehicle is hooked up to lunar surface support equipment, and the crew moves to

the lunar habitat for the lunar stay. Due to the aerobrake overhang, cargo must be

unloaded from the side of the core and moved to the base, either with built-in

provisions or utilizing a lunar 'flatbed trailer', as shown in Figure 2.3.1-3. At the end of
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the lunar stay, the crew loads retum cargo and boards, checks out the vehicle, then the

core vehicle ascends and returns to the LEO node, utilizing an aeromaneuver, where it

is inspected and refurbished for the next flight.

For the unpiloted mission, the core stage is flown without crew module and aerobrake,

and is left on the lunar surface with the descent tanksets after landing.

Mass summaries for the space-based S'iV concept are given in Figures 2.3.1-4 and

2.3.1-5 for the piloted and unpiloted lunar missions, respectively. A weight growth

margin of 15 percent was added to the estimated dry weight of each flight element to

cover effects of design changes required to meet specifications at the time of delivery.

2.3.2 Flight Element Description

a. Core Stage -The space-based core stage has an external load-bearing

body structure with structural interfaces to the crew module, aerobrake, cargo, and

drop-tanks. The body structure includes twelve major Iongerons, a series of interior

stabilizing struts, forward and aft stabilizing struts, and exterior closeout panels. The

twelve 15.0 ft long, graphite / epoxy Iongerons transfer primary loads and form the

backbone of the structure upon which the rest of the structure is supported. Eight of

the Iongerons include interface fittings for the landing gear attachment, cargo

attachment, and descent drop-tank attachment. The stabilizing struts are graphite /

epoxy struts of varying lengths and sizes with titanium end fittings. The exterior and

lower closeout panels are sandwich panels with honeycomb core and graphite / epoxy

face sheets. These panels provide structural stiffness as well as shielding for the core

tanks and crew module.

The octagonal thrust structure distributes thrust loads from the main engines to the

vehicle and resists lateral engine gimbal loads. The thrust structure is of graphite /

epoxy design, with six engine mounting pads and associated thrust vector actuator

supports. It also includes struts for lateral load stabilization.

Lunar landing gear includes four sets of landing gear on the core stage that are

deployed during lunar transit and stowed during Earth return, then reused for the next

mission.

NEW D658-10010-1 118



JKJ_IV'O

_ NEW D658-10010-1 119



,ir,_l__jAt'o

,,-i c0 _
! '.-

® <,,

<,><_ ,,.® 1
i 1

r-_ _
-J _

'i _ '= _ I
, , _

wc o _O'r E. m

.00 _- 0 I"l ,^ C _.¢:1) "_m._ __ ,.,

I°°°° =_" i-- _ _o o. c "-.nO

NEW D658-10010-1 120



The core stage tanks are made of Aluminum-Lithium and include two cylindrical LO2

tanks and two cylindrical LH2 tanks with associated propellant aquisition devices. The

tanks contain enough propellant for lunar ascent and Trans-earth injection.

b. Drop-tanksets - The current space-based tanksets include a single LO2 tank

and a single LH2 tank with associated slosh baffles and propellant aquisition devices,

composite honeycomb sandwich intertanks that distribute launch loads from an aft

launch vehicle interface ring, and graphite / epoxy core vehicle interface trusses that

permit on-orbit core vehicle integration and provide structural support during the

mission. The TLI drop-tanks are integrated with the core vehicle above the aerobrake

and require an aerobrake interface ring with both compression and tension interface

fittings, and graphite / epoxy tankset support struts with titanium end fittings sized for

TLI burn loads. The descent drop-tanks are integrated on the sides of the core vehicle

and require graphite / epoxy support trusses with titanium fittings, sized for lunar

descent and landing loads, as well as deployment and release fittings for dropping

the empty tanks on the lunar surface.

c. Aerobrake -The space-based aerobrake is a rigid space-assembled shell

structure of high-temperature graphite/polyimide sandwich panels affixed to a system

of graphitelpolyimide Iongerons and frames. The Iongerons in this structure are

arranged in a series of concentric rings and feed the loads from the honeycomb

panels into the truss members. The truss structure which carries the load into the

vehicle core structure consists of two open-truss primary beams which are offset from

the aerobrake centerline and span the width of the brake. These two trusses also

provide structural attachment for the aerobrake side panels which are attached during

the aerobrake's assembly. On these side panels, three secondary trusses spread

radially from the core structure attachment points as shown in Figure 2.3.2-1.

The graphite polyimide allows the aerobrake structure to run hotter than would be

allowable with an aluminum structure (650 ° F for GR/PI vs. 350 ° F for aluminum).

Along with this higher temperature capability, the thermal expansion of the graphite

polyimide can be tailored to match that of the overlying ceramic TPS. The impact of

this CTE match is that if Shuttle tiles are used, the underlying strain isolation pad (SIP)

can be left out and the tiles would then be bonded directly to the underlying panels.
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d. Crew Module - The space-based crew module consists of a pressurized

primary shell with intemal bulkl_eads and partitions, windows for landing and docking

maneuvers, and two hatches for EVA and crew transfer. The crew module has 27.8

m3 pressurized volume.

Rigid Deployable

15.2 m (50 ft) diameter

9.2 m (30 ft) shroud diameter

(W/CdA =71.4 kg/m2

= 14.6 psf)

70 deg cone

3 m (10 ft) spherical radius nose

.3 m (1 ft) edge radius

TPS Deflnltion

Zirconia fiberous ceramic

mechanically attachable to GR/PI

BlackGlas TM overlayment

Structural Definition

Graphite/polyimide honeycomb

panels

Graphite/polyimide support beams

High temperature seals

Figure 2.3.2-1 Aerobrake Definition
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2.3.3 Subsystem Description

A breakdown of the Space-based vehicle subsystems is shown in Figure 2.3.3-1.

Descriptions of the major subsystems are as follows:

a. Main Propulsion - The selected space-based STV main propulsion system

is a LO2/LH2 system and uses six advanced expander-cycle engines with a vacuum

thrust of 15,000 Ib per engine, and an assumed specific impulse of 481 seconds. It

includes the engines with electromechanical actuation, as well as propellant delivery,

pressurization, fill, and vent systems.

b. Reaction Control - The reaction control system is a gaseous 02 / gaseous

H2 system with an assumed specific impulse of 410 seconds. It ncludes four

GO2/GH2 thruster modules and associated accumulators, pressurization, and control.

c. Electrical Power - The electrical power system features redundant O2/H2

fuel cells fed from accumulators filled from the vehicle main propellant tanks, as well

as distribution and control units and associated wire harnesses.

Fuel cell reactants are drawn from accumulators included in the Reaction Control

Subsystem. The redundant accumulators are sized to provide oxygen and hydrogen

reactants for both RCS and EPS functions for a period of time needed to fill the other

accumulators. Once filled, the reactants are isolated and heated to supercriticai

pressure. Reactants are then drawn off to supply the fuel cells through a system of

CRES manifolds.

For peak power loads during main engine actuation, three rechargeable Nickel-

Hydrogen batteries are included in the power supply to supplement fuel cell power.

The batteries are sized to provide a total of 5.0 kilowatt-hours of power to the main

engine actuators.

The power distribution system consists of power distribution and control assemblies,

inverters, and remote switching devices that interface with other vehicle subsystems

and external power supplies.
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d. Avionics - A schematic of the avionics subsystem equipment is given in

Figure 2.3.3-2.

(1) Guidance and Navigation - Provisions for lunar mission operations,

including rendezvous, docking, and lunar landing, with built-in redundancy

for piloted operations.

(2) Communication and Data Handling - Provisions for communication,

vehicle health maintenance, and data handling, with audio/video interfaces

for piloted operations and instrumentation for drop-tank monitoring and

control.

(3) Displays and Controls - Provisions on the crew modules for limited crew

control and status monitoring of the vehicle during critical phases of the

mission.

e. Environmental Control / Life Support - Environmental Control and Life

Support (ECLSS) includes provisions on the crew module for atmosphere supply and

control, internal equipment cooling, as well as metabolic and equipment heat

rejection, similar to the 90-day reference concept. In this case, though, all life support

functions are contained in a single crew module.

The system is an open loop life support system, with no regeneration of either

atmosphere or water. Atmospheric gases are supplied from storage and from the fuel

cell reactant supply accumulators, and carbon dioxide is removed from cabin air by

replaceable LiOH canisters.

An active thermal control (ATC) loop is incorporated into the environmental control

system, with coldplates for electronic equipment cooling, a cooling water loop for cabin

thermal control, a Freon loop to cool vehicle heat loads, various equipment heat

exchangers, and a variety of heat rejection devices designed for specific mission

phases. Heat rejection devices include ground support equipment (GSE) heat

exchangers, water flash evaporators, and space radiators.
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f. Personnel Provisions

Personnel provisions include food, water, and waste management systems, as well as

fire detection and crew furnishings, similar to the 90-day study reference. The food

management system provides for the storage, preparation, and preservation of food for

the crew. The food is shelf-stabilized and is prepared using warm water and heated in

a convection oven, similar to the shuttle.

The water management system provides for potable water during the mission duration,

and includes a water storage tank with water drawn from the fuel cell by-products,

water dispenser, as well as tanks with a contingency water supply. The waste

management system for both space- and ground-based vehicles includes a

partitioned zero-g commode / hygiene station with waste storage tank and pre-

moistened wipes for personal hygiene.

Crew fumishings include flight seats, emergency medical / health provisions, and

personal equipment storage provisions. The flight seats, similar to those on the STS

Orbiter, provide restraint and impact attenuation for all phases of flight and can be

removed and stowed during flight.

2.3.4 Performance

The current space-based vehicle concept can either deliver 9870 kg cargo to the lunar

surface in a piloted mode or 52,683 kg in a cargo delivery mode. With this cargo split,

a total of 418 tonnes of cargo is delivered to the lunar surface over 21 piloted and 4

cargo-only missions, and the size of the vehicle is common to both piloted and cargo-

only missions.

Different configurations of the space-based S'IV flight elements can be used to

capture other non-SEI missions, as shown in Figure 2.3.4-1 as well as CNDB mission

payloads and delta-V's. Un-pUoted delivery missions are shown as single points on

the chart and are captured by the core stage with RL10's and descent tanksets, except

for the lunar cargo delivery mission (L4) and recoverable polar platform servicing

mission ($1), which require additional tanksets. Piloted missions are shown with

dashed lines, connecting delivered mass (including return stage, crew module, and

delivered payload) to the delivered payload, and retum mass (including crew module

and retum payload) to return payload quantities. The sample return mission (C1) is
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captured completely by the core stage only. This stage is also adequate for both the

lunar (L3) retum and GEO servicing (G2) return. To deliver the core stage, crew

module, and payload for the G2 mission, descent tank.sets must be added for the

delivery leg. To deliver the lunar core stage and lunar cargo, the full lunar vehicle is

required.

2.3.5 Space-Based LTS Cost Estimates - 1.5 Stage

The space-based single stage estimate for the STV Lunar Transportation System

(LTS) mission is generated from many sources of description and cost data. Besides

the 90-Day Study vehicle (a two stage configuration) experience, the Boeing S'IV

study team collected data from prior Orbital Transfer Vehicle (OTV) studies and

companion space transportation studies accomplished for NASA by General

Dynamics (GD) and Martin Marietta (MMC). Data for space operations and

provisioning descriptions was extracted from several GD and MMC studies of space-

based systems operating from a space station node.

a. Aerobrake Estimate - Prior Boeing engineering work on aerobrakes and hot

structure spaceplane materials (like Dynasoar structures, Single Stage to Orbit

structures, advanced fighter structures, and the National Aerospace Plane special

sealants) was obtained and reviewed by the Boeing team. Aeroassist Flight

Experiment advanced tile design improvements CAD/CAM process data was also

obtained from NASA JSC project engineers. This background data helped the

configurator and cost analysts to identify aerobrake subsystems technology

applications, from a designers point of view, for the aerobrake cost estimate inputs

and the development of an in-depth aerobrake development plan.

b. Drop Tank Estimates - The estimates for drop tanks were compared with

Boeing Saturn 1C and public domain Shuttle external tank acquisition cost and hours

actual data to check the reasonableness of the parametrically-derived cost estimates.

Data was collected from Kennedy Space Center for the NSTS Shuttle external tank

operations and it was used to develop the drop tank operations flows for STV

operation and support cost estimating.

Design of the thermal protection and fluid control of the drop tanks was supplemented

by cost analysis of the COLDSAT test system (accomplished earlier in the study as an

additional special study task on the STV contract.) The COLDSAT cost estimate
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results were reviewed jointly by the NASA, Boeing, MMC, and GD participants. The

COLDSAT contractors cost estimates information provided the teams with valuable

calibration data for the space-based vehicle cost estimate.

c. Crew Module Estimates - The crew module estimate was derived from an

expanded hardware definition list generated in cooperation with Boeing Seattle and

Huntsville designers. The crew module and stage avionics functions were balanced

between the two flight elements to ensure access and modularity for lower

refurbishment hours and cost. In some cases, NSTS Shuttle Orbiter actual

operations cost data for avionics and life support subsystems was used to develop the

operations flow estimates for cost estimating inputs. Special operations factors were

added to the Orbiter experience for advanced avionics reductions in maintenance

(credit) and increased time for in-situ space refurbishment (debit).

d. In-space Operations - Cost factors and relationships were derived from data

generated for Space Station Freedom in 1988 and 1989. Figure 2.3.5-1 contains the

in-space cost estimating factors used to generate the operation and support costs for

this preferred space-based LTS configuration. The in-space operations estimates

included special costs for the maintenance supplies and booster Earth-to-orbit (ETO)

costs associated with the continuous operation of the reusable LTS vehicle.

e. Development Test Quantity - From a design development stand point,

special groundrules and matrices were developed for the test hardware quantity

requirements. Ground and flight test hardware quantities are cost drivers in the

development estimate. Figure 2.3.5-2 contains an example of a matrix approach to

identifying STV transfer stage test hardware requirements and usage in the

development phase. A matrix like the one shown was developed for every

configuration flight element. The final "equivalent" quantity of test units (some

subsystems require more units, some less), was a total of five units for the

development phase.

L ,Design for Cost- Information was generated to establish a cost conscious design

attitude for the space-based system configuration. Figure 2.3.5-3 contains a pie chart

breakout of the core stage cost estimate which was used to identify development high

value items. The development cost risk analysis results shown in figure 2.3.5-4 were

used in concert with the estimate percentage allocation pie charts to optimize the

space-based design and development cost estimates.
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Figure 2.3.5-4: A Boeing Ranger Cost Analysis is Conducted

g. Cost Estimate Summaries - Boeing was asked to look at other uses for the

STV LTS core stage in a derivative configuration with less engines. Figure 2.3.5-5 is

a summary of the space-based LTS estimates presented in October, 1990. The "STV

Other Production" line in the summary is the production cost estimate for those other

mission hardware units.

After the final review, Boeing was directed by the customer to change the mission

model for STV to only include the lunar missions plus the required space tug missions

and add ETO cost estimates to the LCC total. Figure 2.3.5-6 contains the final space-

based LCC summary. The net result of eliminating the "other" missions described in

the NASA Civil Needs Database and adding ETO costs (dollars per pound estimtes

supplied to both contractors by NASA MSFC) was about 15.5 billion dollars due to

mission model change credits and ETO cost debits.

Evolutionary system requirements, which generate hardware development benefits

and added program complexities, need to be considered at the subsystem component

level to properly estimate the STV configuration costs for a mixed mission architecture.

Special attention to design input descriptions and sequence of development for the

related hardware subsystems can reduce (or significantly increase) the overall cost

estimate. In the case of this estimate, the added other STV mission expendable

hardware was a significant LCC driver for the space-based LTS configuration (over

50% of LCC, according to the mission model groundrules provided by the NASA

customer and Boeing mission analysts.)
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2.4 Ground-based Concepts

Two configurations of a ground-based STV include a single-launch concept and a

multiple-launch concept. The two selected ground-based concepts are cryogenic

vehicles with a reusable crew module and avionics pallet, an expendable core stage

made up of a propulsion module and tankset, a pair of expendable TLI drop-tanksets,

a pair of expendable delivery stages, and an expendable lunar lander platform.

Figure 2.4-1 shows a single-launch concept in which all flight elements are launched

full in a single HLLV launch, and Figure 2.4-2 shows a concept in which most of the

LO2 is launched in a separate launch and transferred to the main vehicle in LEO. In

both cases, on-orbit assembly is minimized. The vehicles each have six main

engines, allowing two engine-out capability during all mission phases.

2.4.1 System Design and Operation

The ground-based vehicle can be operated in either of two launch modes. The entire

vehicle with crew and cargo can be launched to orbit fully loaded aboard a very

heavy-lift launch vehicle (single-launch ground-based), or it can be launched in two or

more smaller launches (multiple-launch, on-orbit rendezvous). For the latter case, the

first launch would include a tanker to fill the vehicle LO2 tanks and the second launch

would include the vehicle with off-loaded LO2 tanks. In both cases, the only reusable

element is the crew module with equipment pallet, which reenters the Earth's

atmosphere and retums to the ground, where it is refurbished and reused.

The on-orbit operations of the multiple-launch vehicle are depicted in Figure 2.4.1-1.

The L02 tanker launched initially remains on-orbit until the core vehicle launch. The

core vehicle is launched with a crew module escape structure that includes a docking

mechanism and tank fill provisions. It docks with the tanker, fills its L02 tanks, then

jettisons the tanker, escape structure, and L02 fill plumbing. From that point, both

ground-based concepts are similar in mission configuration.

The common configuration sequence of the ground-based STV is shown in Figure

2.4.1-2. The TLI tanks are dropped after the TLI bum, and the vehicle descends to the

lunar surface following lunar injection with lander, core stage, delivery stages, and

cargo. During landing, the crew can view two landing pads and the horizon over the

top of the cargo pallets. Upon arrival, the cargo is unloaded and the delivery stages,

with one engine each, are either removed or tilted aside. The vehicle is hooked up to
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lunar surface support equipment, and the crew moves to the lunar habitat for the lunar

stay. Cargo can be unloaded from the side of the core, as shown in Figure 2.4.1-3,

and moved to the base, either with built-in provisions or utilizing a lunar 'flatbed trailer'.

At the end of the lunar stay, the crew loads return cargo and boards using a hoist,

checks out the vehicle, then the core vehicle ascends, with the expendable lander

acting as a launch platform. The core stage is expended prior to reentry, and the crew

module with avionics pallet reenters and lands near the launch site, as shown in

Figure 2.4.1-4, where it is inspected and refurbished for the next flight.

For unpiioted lunar cargo-delivery missions, neither the crew module nor the ascent

tankset are required, and the core propulsion module with avionics pallet is left on the

lunar surface with the lander and delivery stages.

Mass summaries for the ground-based S'IV concept are given in Figures 2.4.1-5,

2.4.1-6, and 2.4.1-7 for the piloted lunar, unpiloted lunar, and unpiloted GEO delivery

missions, respectively. A weight growth margin of 15 percent was added to the

estimated dry weight of each flight element to cover effects of design changes required

to meet specifications at the time of delivery.

2.4.2 Flight Element Description

a. Core Stage -The ground-based core stage is made up of a tankset and

propulsion module. The tankset has an extemal load-bearing truss body structure with

a forward interface to the avionics pallet and crew module, an aft interface to the

propulsion module, and forward interfaces to a pair of TLI drop-tanks and a pair of

delivery stages. The truss includes forward and aft aluminum interface ring frames,

two aluminum ring frames that provide support for the core LO2 and LH2 tanks, and

intermediate graphite / epoxy Iongerons and stabilizing struts. The propulsion module

consists of a thrust structure and a lander interface structure with explosive bolt fittings

that attach to four support arms on the lander.

The core stage thrust structure consists of an aluminum double-cruciform beam

structure and circular thrust ring with an average cross-sectional area of 4.0 in2

excluding beef-up and pads, and is attached to an interface ring that transfers thrust

loads into the lander and core tankset. The thrust structure also includes engine

interface / TVC actuator pads and lateral load stabilization struts. Each single-engine
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delivery stage has a thrust structure that consists of a cruciform thrust beam for load

distribution into the tankset structure, as well as an engine interface / "I'VC actuator

support pad.

On the ground-based vehicle, the lunar landing gear is part of an expendable lunar

landing platform that supports the core stage, delivery stages, and cargo modules

during landing, and acts as a support platform for the core stage ascent from the lunar

surface.

The core stage tanks are made of Aluminum-Lithium and include a single cylindrical

LO2 tank and one cylindrical LH2 tank with associated propellant aquisition devices.

The tanks contain enough propellant for lunar ascent and Trans-earth injection. The

LO2 tanker is a single tank with internal stiffening and slosh baffling capable of

withstanding launch conditions fully loaded. A description of the tanker is given in

Figure 2.4.2-1.

b. Drop-tanksets -The ground-based tanksets are a different design, with a

graphite / epoxy Iongeron and ring concept common to both delivery stages and TLI

tanksets that easily integrates into the lander platform octagonal structure and that

supports the tanksets partially loaded during launch. Tanks are supported within this

truss by passive orbital disconnect struts (PODS). The struts are under development

at NASA JPL and consist of concentric composite tubes; the outer tube designed for

ground and launch loads, the inner one for smaller on-orbit loads. Once in orbit the

outer tube pulls away from the inner one, reducing the on-orbit heat leak through the

struts.

c. Crew Module -The ground-based crew module structure includes an

internal pressurized shell with internal bulkheads and partitions and an external

aerodynamic shell designed for reentry aerodynamic loads and landing. The crew

module has windows for landing and docking maneuvers, and two hatches for EVA

and crew transfer. The ground recovery subsystem applies to the ground-based crew

module only. This subsystem includes all provisions for recovery of the crew module

on the ground at mission conclusion, it includes parachutes, ground landing gear for

the nominal dry landing, and emergency splashdown provisions for a launch abort or

terminal descent steering failure.
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Figure 2.4.2-1 LOX Tanker Description

The parachute system includes a primary and backup drogue chute for initial

deceleration, and a primary and backup hi-glide parafoil chute for final deceleration to

touchdown. Also included are the parafoil control mechanisms for final descent

steering and installation provisions for the chutes. The drogue chutes are 53 ft

diameter mortar-deployed conical ribbon chutes for deceleration to a terminal velocity

of 160 fps. The main chutes are two-stage controllable parafoils; the initial reefed

condition slows the module to about 22 fps vertical velocity to minimize drift, then the

parachute is opened fully to slow the vertical velocity to about 10 fps for final

touchdown.

The ground-landing impact attenuation design includes two primary stroking struts

with skids for primary attenuation, and a small castoring wheel (to prevent tipover)

attached to a trailing arm strut located in the pointed end of the vehicle (aft end on

landing). Large skid pads for low surface loading are part of the exterior vehicle skin

and form the cover/door to the landing gear-well housing a gas cartridge deployed

gas-filled strut. With the exception of the gas cartridge used for deployment, all

components are reusable.
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With a dry landing as a primary crew module recovery mode, the terminal descent and

impact attenuation hardware are designed by the requirements related to a 'hard'

landing. In the case of a launch abort or terminal descent control failure, however,

water splashdown is unavoidable. The biconic shape of the crew module minimizes

impact deceleration if water entry occurs nose-down, so provisions must be included

in the parachute system for achieving this attitude. Other provisions for a water

spashdown include flotation bags and associated inflation device of sufficient size to

right the module and keep escape hatches well above the water level.

2.4.3 Subsystem Description

An overview of the vehicle subsystems is given in Figure 2.4.3-1 and a description of

the subsystems follows:

a. Main Propulsion System - Main Propulsion - The selected ground-based

STV main propulsion system is a LO2/LH2 system and uses a total of six advanced

expander-cycle engines with a vacuum thrust of 15,000 Ib per engine, and an

assumed specific impulse of 481 seconds. It includes the engines with

electromechanical actuation, as well propellant delivery, pressurization, fill, and vent

systems.

b. Reaction Control System - Reaction Control - The reaction control system

is a gaseous 02 / gaseous H2 system with an assumed specific impulse of 410

seconds. It includes four GO2/GH2 thruster modules on the delivery stages and four

on the crew module, with associated accumulators, pressurization, and control.

c. Electrical Power - The electrical power system is similar to the space-based

vehicle version, but also includes battery power on the crew module for a power

supply during reentry and landing.

d. Avionics

(1) Guidance and Navigation - Provisions for lunar mission operations,

including rendezvous, docking, and lunar landing, with built-in redundancy

for piloted operations.
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(2) Communication and Data Handling - Provisions for communication,

vehicle health maintenance, and data handling, with audio/video interfaces

for piloted operations and instrumentation for drop-tank monitoring and

control.

(3) Displays and Controls - Provisions on the crew modules for limited crew

control and status monitoring of the vehicle during critical phases of the

mission.

e. Environmental Control and Life Support (ECLSS) -Includes provisions on

the crew module for atmosphere supply and control, internal equipment cooling, as

well as metabolic and equipment heat rejection, similar to the 90-day reference

concept. In this case, though, all life support functions are contained in a single crew

module.

The system is an open loop life support system, with no regeneration of either

atmosphere or water. Atmospheric gases are supplied from storage and from the fuel

cell reactant supply accumulators, and carbon dioxide is removed from cabin air by

replaceable UOH canisters.

An active thermal control (ATC) loop is incorporated into the environmental control

system, with coldplates for electronic equipment cooling, a cooling water loop for cabin

thermal control, a Freon loop to cool vehicle heat loads, various equipment heat

exchangers, and a variety of heat rejection devices designed for specific mission

phases. Heat rejection devices include ground support equipment (GSE) heat

exchangers, water flash evaporators, and space radiators.

f. Personnel Provisions - Personnel provisions include food, water, and waste

management systems, as well as fire detection and crew furnishings, similar to the 90-

day study reference. The food management system provides for the storage,

preparation, and preservation of food for the crew. The food is shelf-stabilized and is

prepared using warm water and heated in a convection oven, similar to the shuttle.

The water management system provides for potable water during the mission duration,

and includes a water storage tank with water drawn from the fuel cell by-products,

water dispenser, as well as tanks with a contingency water supply. The waste
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management system for both space- and ground-based vehicles includes a

partitioned zero-g commode / hygiene station with waste storage tank and pre-

moistened wipes for personal hygiene.

Crew furnishings include flight seats, emergency medical / health provisions, and

personal equipment storage provisions. The flight seats, similar to those on the STS

Orbiter, provide restraint and impact attenuation for all phases of flight and can be

removed and stowed during flight.

2.4.4 Performance

The current ground-based vehicle concept can either deliver 11,630 kg cargo to the

lunar surface in a piloted mode or 43,443 kg in a cargo delivery mode. With this cargo

split, a total of 418 tonnes of cargo is delivered to the lunar surface over 21 piloted and

4 cargo-only missions, and the sizes of the vehicle flight elements are common to both

piloted and cargo-only missions. As was already mentioned, the ascent tankset is not

required for the cargo-only lunar mission.

Cargo delivery capabilities of various configurations of the ground-based STV concept

are given in Figure 2.4.4-1 as well as CNDB mission payloads and delta-V's. For

capture of non-lunar unpiloted missions the delivery stage portion of the lunar vehicle

can be used as an independent vehicle. Piloted missions are shown with dashed

lines connecting delivered mass (including return stage, crew module, and delivered

payload) to delivered payload, and return mass (including crew module and return

payload) to return payload quantities. The sample return mission (C1) is captured

completely by the ascent stage only. This stage is also adequate for both the lunar

(L3) retum and GEO servicing (G2) return. To deliver the return stage, crew module,

and payload for the G2 mission, a combination of descent stages and lander platform

is required. To deliver the lunar return stage and lunar cargo, the full lunar vehicle is

required.
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2.4.5 Ground-Based LTS Cost Estimates

The STV ground based systems which were selected for the LTS mission excluded

aerobrake hardware. Instead, the crew module was designed to return in a ballistic

trajectory to the Earth launch point after return from the Moon. Therefore, only the

cost data associated with advanced thermal protection panels was useful from the

space-based vehicle cost estimating exercise.

Other space-based configuration cost data used in developing the final two preferred

ground-based configurations are: the main propulsion engine planning estimates (all

three systems are designed to use the Advanced Space Engine); the drop tank

estimates (maturity and complexity factors were similar, but the sizing was different);

fuel supply components unit costs (valves, regulators, etc.); and power, life support,

and avionics components (fuel cell unit cost estimates, partially closed life support

system hardware, inertial guidance hardware, etc.)

a. Drop Tank Estimates - The drop tanks description for the ground-based

systems require less thermal protection than the space-based and the diameters were

all common which benefits from design repeat factors and reduces overall hardware

acquisition cost. Tank structures cost estimating relationships were calibrated to the

extemal tank, Saturn 1C and COLDSAT study data (see space-based estimate

writeup.) The fluid supply system for the dual launch ground-based vehicle option

was a little more expensive due to the requirement to transfer LOX fuel in low Earth

orbit.

The launch system also required a tanker flight before the flight vehicle was launched

with the crew on the next launch. The costs of the two launch system were higher

than the single launch ground-based vehicle design due to the added expendable

hardware and launch costs associated with the tanker. The tanker development

estimate was coordinated with the drop tanks estimate to take advantage of common

design and development processes for the same hardware components on both flight

elements. The TLI drop tanks for the ground-based units were the same net

development estimate as the space-based tanks (390 million in 1991 dollars.)

b. Biconic Crew Module-The ground-based crew module estimate was

generated from the LTS configuration weight statement description and prior
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Personnel Launch System study cost data. The PLS data was generated just prior to

the STV phase I final cost estimates.

The PLS database of avionics unit costs, structures and thermal protection estimates

and parafoil chutes information from the vendor (Pioneer Systems) gave the cost

analysts a great advantage at developing the estimate in a shorter period of time.

Avionics was moved outside the reference PLS design to accommodate the life

support and crew provisions for the longer lunar mission requirements. The biconic

crew module description is the same for both the single and dual launch ground-

based systems.

Figure 2.4.5-1 is a copy of the cost estimate output (in 1991 dollars) from the Boeing

Parametric Cost Model (PCM) for the biconic crew module development phase.

c. Creating the Production Estimate - The method of extending the ground-

based system production first unit costs is summarized in figure 2.4.5-2. Note that the

cost improvement curve application changes for the different system flight hardware

elements.

d. Final Ground-Based Estimate Summary - Figure 2.4.5-3 contains the final

estimate in 1991 dollars for the dual launch and single launch systems.

The summary ground processing flow for the dual launch system is presented in figure

2.4.5-4. Many hours of systems analysis and cost model setup activities, using

designers' and operations analysts' descriptive system characteristics data and

technical resource estimates, are required to develop the one simple looking LCC

summary chart. Without the design description information at a subsystem level, the

operation and support and launch facilities estimates have little credibility.
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Figure 2.4.5.-1: Ground Return Crew Module Estimate

Summary Output from the Boeing PCM
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Figure 2.4.5-2: A Production Estimate is Developed for the Ground-Orbital
L TS Candidate on an Excel Spreadsheet
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2.5 Evaluation Methodology

Program- and system-level trade study and analysis methodologies are presented in

this section. The definition of concepts to be examined in this architecture study

started with an assessment of orbital options based on use of different basing

locations and transportation nodes. The types of trades exercised in this architecture

study are as follows:

ae Number of stages.

b. Crew module approaches.

C. Basing approaches.

d. Lunar approach trajectory.

el Aerobrake versus all-propulsive return.

f. Use of droptanks versus propellant tankers

Options defined for the six architecture trades were combined in a matrix resulting in

over 400 possible architectures. Groundrules and assumptions were applied to

reduce these combinations to 94 architectures for which performance and mission

scenarios were developed. Based on this work, 29 scenarios were selected and

initially assessed against the cost and margins and risk evaluation criteria to

determine trending. Based on the observed trends, 13 additional scenarios were

initially included and one was added later. The resulting 43 scenarios were fully

evaluated against the four evaluation criteria to determine the preferred architectures.

An overview of this process is shown in Figure 2.5-1.

Using the mission scenarios, unique flight elements were identified and characterized.

A functional split was made between flight elements to distinguish mass and

subsystem definitions, as well as unique hardware and operations. The ultimate goal

was to identify concept differences that distinguished hardware and operations costs.

The process for defining unique flight elements to support the cost assessments

included a description of all vehicle options identified in the mission scenarios, an

analysis of mission functions to identify functionally unique flight elements, and a mass
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definition of unique flight elements to support the cost analysis. The flight element

definition process is shown in Figure 2.5-2.

2.5.1 Performance

In parallel with the flight element definition analysis, mission performance of trade

study options was calculated using mass trending data generated from a database of

previous STV designs. The results of the performance analysis were then used to

identify vehicle sizings and provide booster requirements for LCC analysis. As part of

the mission performance analysis, a tank-drop optimization analysis was also

conducted to determine when (i.e., after which major bums) the droptanks should be

expended.

The performance analysis was designed to provide a good relative comparison

between concepts as to ETO mass requirements and mass in LEO and LLO. These

mass values changed for the downselected vehicle designs as they were developed

and optimized. However, the relative differences identified between the scenarios

indicated the performance differences would remain essentially the same as any of the

different scenarios were optimized.

a. Tank-Drop Optimization Analysis - As part of the trade study analysis, an
)

optimization of tank-drop event numbers and location was performed for 1.5-stage

(direct to lunar surface) and 2.5-stage (LLO node) vehicles to check initial assumptions

made in the mission scenarios and to provide a basis for future tank-drop

assumptions. The analysis was performed for both space-based and ground-based

options, using single crew modules for the direct to lunar surface cases and dual crew

modules for the LLO node cases. For each case, all combinations of tank-drop events

following major burns were examined, including no tank-drop events. For LOI

droptanks, it was assumed that the droptanks would not be disposed of until after

rendezvous with the lunar excursion vehicle following the lunar surface operations.

Droptank disposal can occur with TLI and TEl droptanks disposed of by reentry into the

atmosphere or by being boosted out of the Earth-Moon system. The latter option is

accomplished prior to midcourse correction and is the preferred option. For LOI, LD, or

LA droptanks, lunar surface disposal is the method of disposal.
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2.5.2 Cost Trade Study Methods

As described in the previous "funding" section of this document (see 1.2.2), the initial

phase 1 cost analysis effort was postured to support the system level design trades at

a Lunar Transportation System (LTS) architecture level. An estimating plan was

conceived to calculate the cost of many different STV candidate configurations using a

modular design description approach for parametric cost model inputs. Figure 2.5.2-1

illustrates the overall STV cost estimating methods devised for for phase I system

trades support. The Excel © spreadsheet model (shown as a matrix output table of

"relative costs" in the lower right hand corner of the figure) was developed as a final

compliment to the parametric cost modeling system, and the spreadsheet model was

subsequently delivered to the MSFC study program office (after the presentation at the

fourth interim review.)

The phase I cost analysis plan was to originally process up to 100 cost estimates for

the candidate designs. (This prediction was close to the original down-select of over

240 concepts to about 94 STV design concept flnalistsl) The figure shows design

analysis personnel as providing the: "Space System Platform ..." description and

drawings set (for cost model global inputs derivation); equipment lists in the form of

informal "Hardware Cost Data Sheets " or block diagrams; and "Hardware Mass

Prop. & WBS Correlation" tables of component level weight estimates (with materials

and subsystem content assumptions for each line item in the weight estimate tables.)

The weights estimator and configuration design personnel worked very hard to

modularize the design description inputs in an orderly manner. Meanwhile, the

systems manifest evaluation analyst developed the LCC accumulator spreadsheet

and the cost parametricians developed the "straw man" PCM loading files and global

inputs sheets for over 100 PCM cost runs of the various flight elements (separate runs

were made for both development and theoretical first unit estimates.) All initial trade

study estimates were calculated in constant-year 1989 "relative" dollars (as was

previously stated, later in the phase I study the IR#5 final STV cost estimates were

produced in 1991 dollars.)

The system cost trade study process during phase I was further designed to use

maximum and minimum flight element scaling descriptions for the development of

hardware cost trend curves. Then, flight element cost trend curves would be created

to reduce the number of Boeing Parametric Cost Model (PCM) runs and the number of
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mass properties estimates required for definition of all options. The 96 candidate

configurations were reduced to just over forty configurations using a technical

screening process. The technical screening process was used to select those

designs which were pertinent in trading several basing and mission operation

alternatives of special interest to our MSFC customer. (A majority of the remaining

designs from the original 94 candidates would be traded at a later date with new

boosters.)

Figure 2.5.2-2 depicts this system trades estimating process steps presented at IR#3

briefing by Boeing. Figure 2.5.2-3 illustrates the overall complexity of the trade study

cost analysis and design descriptions support effort. The two charts summarize the

trade study plan and results which led the Boeing team to select the final three

preferred STV candidates for the LTS mission, two ground-based and one space-

based vehicle. The three basic finalist designs were presented at the IR#5 STV

briefing.

Figure 2.5.2-4 contains a list of the final set of "Boeing-preferred" STV design LTS

candidates (meeting the customer-provided mission model and requirements

groundrules) and their respective LCC estimates (in "relative" 1989 dollars.) The final

phase I cost estimates (in 1991 dollars) for the final three preferred choices, and the

90-Day Study reference vehicle, are explained in the preceding subsections.

2.5.3 Risk and Margins

The STV system and each of the subsystems will be designed with margins for all

contingencies. In addition, risks for each mission operation and each mission phase

will be mitigated as much as possible using modem engineering techniques.

However, some system configurations will inherently have margins and some system

configurations will inherently mitigate risks simply because the architecture avoids

particular situations during the mission profile. The margins and risk evaluation

attempted to identify and quantify the risks and margins that are discriminators

between the scenarios.

The breakdown in weighting between risk and margins and the respective

subcategories is shown in Figure 2.5.3-1. The risk area is broken into equal weighting

between technical and programmatics risk. Technical risks deal with the risk during the

operational phase and include such things as mission success, performance and
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operation, and safety and reliability. In general, the programmatic risk deals with the

anticipated risk associated with the FSD program phase (i.e., cost and schedule). The

technical risk category is further broken into 10 risk subcategories as shown in Figure

2.5.3-2, which are weighted as to their respective importance. Each system concept

was given relative grades of either 1, 2, or 3 (1 for low risk, 2 for medium risk, and 3 for

high risk) for each of these categories with low risk being best. Figure 2.5.3-3 contains

the detailed definitions and respective scoring approach for all of the risk categories.

The risks evaluated here exclude design for risk mitigation.

The five margin categories (mission growth, payload growth, operational flexibility,

safety, and repairability) and the scoring rationale are shown in Figure 2.5.3-4. The

margins evaluated here exclude design margins.

To support the cost and margins and risk assessments, and the subsystem design

task, operations flows were developed for the mission scenarios. Operations were

defined from the start of KSC processing of a new vehicle to the end of the mission on

its second flight. This covers all major events, excepting final disposal, in the vehicle's

life, including refurbishment for reflight. Figure 2.5.3-5 shows the operations element

definition process.

A diverse source of inputs was considered in developing the operations flows. Studies

have been performed in the past by several major contractors whose primary purpose

was to define on-orbit operations of an OTV (STV of lunar vehicle). Operations were

defined at a major task description level, with a ROM estimate of task duration hours

assigned. Figure 2.5.3-6 demonstrates the difference in complexity between space-

based and ground based scenarios. The number of operations steps required was

considered as a minus in the risks and margins analysis task.
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2.5.4 Applicability to Mars

The Mars mission benefR was one of the evaluation criteria for STV concept selection

with a 5% weighting of the total evaluation criteria. The purpose of this analysis was to

determine how much the STV concepts, designed for the lunar missions, can benefit

the Mars missions and vehicle designs as they are projected at the current time.

Mars vehicle designs include a transfer vehicle (MTV) and an excursion vehicle

(MEV). MTV options include cryogenic vehicles, nuclear energy propulsion (NEP)

vehicles, solar energy propulsion (SEP) vehicles, and nuclear thermal rocket (NTR)

vehicles. For this analysis, it was assumed that the MEV is cryogenic and has an

aerobrake, no matter what the MTV type. Because the cryogenic MTV would benefit

most from the lunar missions, it was chosen as the baseline for this analysis. To

determine the overall benefit of each of the lunar vehicle concepts, specific benefits

were weighted independently and scored and then combined with equal weighting for

the MTV and MEV.

Types of Mars mission benefits were broken into subsystem- and system-level benefits

(e.g., structures, aerobrake, and propulsion) and further into specific areas of benefit

(e.g., landing gear, mate and demate umbilicals, and aerobrake on-orbit assembly)

and then weighted independently for the MTV and MEV. These were then graded as to

the level of benefit received from the lunar mission technologies (1 = technology

benefit and 2= hardware or operations benefit). Figure 2.5.4-1 shows the areas of

benefit and weighting for each of these areas.

The Mars vehicle weighting for each system or subsystem item was multiplied by the

lunar vehicle benefit and summed to achieve a total score for each lunar vehicle

concept. The scores for the MTV and MEV were then weighted equally to yield the

overall Mars benefit score for each lunar vehicle option.
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2.5.5 Non-SEI mission capture

Evolutionary mission capture was one of the evaluation criteria for s'rv concept

selection with a weighting of 15% of the total evaluation criteria. The purpose of this

analysis was to determine how well the STV concepts designed for the lunar missions

could capture other NASA and DoD missions identified as design reference missions

(DRM). A general groundrule used for this analysis was that only "smart" stages based

at the SSF or the ground could be used as the primary stage for these other missions.

The concepts were scored both by stage efficiency, that is, how efficient the lunar-

sized stage can perform the other missions (required propellant mass and total start

mass, excluding payload), and by Earth-to-orbit launched mass. These values were

averaged over the mission model by the percentage of each mission included and

then scored 1 to 5 (1 = best and 5 = worst) and weighted 80% mass fraction (i.e., stage

efficiency) and 20% ETO mass. This weighting accentuates the stage efficiency in

performing other missions. Because the NASA-only mission model and the combined

NASA/DoD mission model differ as to the types of missions that were included, the

analysis was clone for each mission model and they were given equal weight in this

analysis.
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2.6 Lessons Learned

The evaluation criteria of cost, margins and risk, benefits to Mars, and non-SEI mission

capture were weighted 50%, 30%, 5%, and 15%, respectively, according to the

estimated importance of these criteria to the overall program. Sensitivity to this

weighting split was also explored to determine the optimum vehicle design or designs.

In this way, several general trends were noted from the architecture analysis. Ground-

basing was favored as a basing option, with lunar-direct as the favored trajectory

option. A single combined crew module was the favored crew module option, and the

fewest number of stages was favored. The number of stages was the most influential

trade, with trajectory options being the least influential.

2.6.1 Measures of Goodness

a. Performance - Although not a primary weighting criteria, vehicle

performance contributes to vehicle costs, as was noted before. For single crew

module concepts that go directly to the lunar surface, the lowest five-flight ETO mass

concepts were the ground-based 1.5-stage vehicles. The worst cases were the

combination space- and ground-based options, with 5% to 30% heavier mass than

other options. These were poorer performers because both the stage aerobrake and

crew module heat shield go all the way to the lunar surface. The space-based options

were also poor because stage aerobrakes go to the lunar surface (no staging in LLO).

For single crew module concepts that use LLO for hardware storage, the lowest five-

flight ETO mass were the space-based 2.5-stage vehicles These vehicles have a

reusable LEV in lunar orbit and relatively lightweight transfer crew modules. The worst

cases were again the combination space- and ground-based options, because of a

heavier crew module (ballistic return) taken to the lunar surface. The ground-based

options also have the heavier crew module, but benefit from not having aerobrakes.

For dual crew module concepts that use LLO for hardware storage, the lowest five-

flight ETO mass was again the space-based 2.5-stage vehicles. Again the combination

space- and ground-based options were the poorest performers, because of the

heavier transfer crew module. Similarly, the ground-based options have the heavier

crew module but benefit from not having aerobrakes. The dual crew module cases

NEW D658-10010-1 180



BHJA/'_

generally were 13% to 15% lighter than the corresponding single crew module cases.

A significant conclusion that can be drawn within the dual crew module option data is

that all ETO mass values are within 5% to 8% of each other. Thus, the dual crew

module scenarios are not as performance sensitive to basing (and related

configuration) impacts as are the single crew module scenarios.

The same trends that apply to the dual crew module cases also apply to the hybrid

crew module cases. The hybrid crew module ETO masses are 2% to 5% higher than

the corresponding dual crew module masses but are 10% to 11% less than the

corresponding single crew module cases. Again, the hybrid crew module scenarios

are not as performance sensitive to basing (and related configuration) impacts as are

the single crew module scenarios.

One of the architecture trade studies was the impact of an all-propulsive as opposed to

an aeroassisted Earth-orbit insertion. For the two cases run, the all-propulsive option

required 13% to 30% more ETO mass.

In the tank-drop analysis, for the 60 tank-drop cases run, the minimum cases are

plotted on Figure 2.6.1-1 as total vehicle IMLEO versus number of tank-drop events.

For space-based missions, the lowest mass occurs with tank-drop events following the

first and second burns ('I'Ll and LOI for options using LOR, and TLI and lunar descent

for lunar direct options). The ground-based minimum occurs with only one tank-drop

event following TL! for either the LOR or lunar direct scenarios.

Sensitivities to the minimum cases are shown in Figure 2.6.1-2, showing tank-drop

cases within 5% of the minimum IMLEO, as well as the worst cases for each basing

option. High penalties occur for no droptanks on direct-to-surface vehicles and for

lunar ascent droptanks on LLO node vehicles.

Note that when the downselected ground-based scenarios were further defined and

optimized, TLI and lunar descent droptanks were used. In the more detailed design

process, landing legs were left on the lunar surface. This change in staging resulted in

the optimum choice for the ground-based options being the use of TLI and lunar

descent droptanks instead of just TLI droptanks.
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b. Cost - The STV design candidates architecture trade study yielded life cycle

cost estimates of minimal difference. In some cases, only the system margins and

risk scores made the lunar mission preliminary design concept candidates more

decisive winners in the down-select process. See section 1.4 for a further explanation

of the general engineering misconception by some that cost equals performance

[changes] for space systems.

The cost analysis results indicated that the more STV flight elements (stages)

developed for the system and then expended in each lunar mission, the least

attractive they are in total life cycle cost (pretty intuitive, if you think about it.) Basing

requirements are a driver in front end development costs. Booster launch costs are a

high value item in the Operations and Support phase for all systems. Ground-based

systems requiring much bigger boosters than the National Launch System derivatives

at the time were penalized heavily in up-front system development costs (in billions of

dollars), but still were lower than space-based systems of equal stage count.

The process used to develop the comparative systems cost data was quite successful

for both STV study contractors, but the time allotments for LCC accumulator model

development (spreadsheet model) and parametric cost model inputs setup was

entirely too short. The cost analysis activity of 21 to 30 days should have been spread

over 45 to 60 days to reduce the overtime stress. Creating the mission scenarios and

design inputs took 60 days longer than was originally anticipated in the Boeing phase

I study plan.

c. Risk and Margins - By comparing space based to ground based concepts,

ground based has approximately 50% (16 out of 30) less steps performed before the

start of the lunar mission. This can be looked at two ways. It implies that there is less

risk in a ground-based system because there are less tasks to be performed. The other

observation is that the decision to start the lunar mission for a ground-based vehicle is

made before boost to LEO, where as for a space-based vehicle, it is made after. This is

significant because the ETO acoustic and dynamic environment is predicted to be the

worst the lunar vehicle will experience.

d. Applicability to Mars - All vehicle concepts provide benefits to the Mars

mission, however, several design options more dearly benefit the Mars missions by
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advancing technologies and by providing operational experience. Overall, a space-

based, multiple-stage vehicle that uses lunar orbit rendezvous and has a hybrid or

dual crew module was shown to provide the most benefits to the Mars program.

Lunar orbit rendezvous is favored because it provides operational experience in

remote, on-orbit rendezvous and fluid transfer techniques. Multiple stages are favored

in general because of the benefit of on-orbit rendezvous and dock, as well as

propellant management experience gained from on-orbit assembly of multiple flight

elements.

The hybrid crew module is favored over single and dual crew modules because of the

applicability to Mars multiple crew modules. Ground-basing is favored for the use of a

ballistic ground-retum crew module, but space-basing is favored overall because of

the long-term on-orbit storage experience gained. Space-basing is also favored

because of aerobrake technology benefits, as well as on-orbit assembly and

operations experience.

e. Non-SEI Mission Capture - All vehicle concepts captured all missions in the

mission model, excluding the Mars mission, using flight elements sized for the lunar

missions. In some cases, only the core vehicle was required; in others, the core

vehicle and additional drop-tanks were needed to accomplish the mission. Overall,

the all-propulsive, combination space/ground-based, 2.5-stage vehicle that uses lunar

orbit rendezvous and has a hybrid crew module is the most efficient at capturing all

non-SEI missions.
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3. STV Phase 2 Summary

Phase 2 of the STV Concepts and Requirements study included lunar STV concepts

designed for specific launch vehicle capabilities, with emphasis on ETO capability

rather than single mission cargo capability. This part of the report summarizes the

Phase 2 findings, specifically the relationships between program objectives, program

requirements, and design characteristics.

3.1 Design Driver Assumptions

3.1.1 Available Funding Resources

No limits were placed on available funding for the STV design and operation, so life

cycle cost was used as a discrimator in this phase of the study.

3.1.2 Space Program Infrastructure

a. NLS Launch vehicle characteristics - It was assumed for this study that the

National Launch System (NLS) or similar program to upgrade the nations ETO

transportation system would precede the lunar exploration program, and that elements

of the NLS program could be adapted for the LTS. The candidate NLS vehicles and

their most promising Heavy Lift Vehicle (HLV) derivatives for lunar exploration are

shown in figure 3.1.2-1. These vehicles are characterized by a common oxygen-

hydrogen core stage using four or six Space Transportation Main Engines (STMEs),

and parallel bum booster elements utilizing either Advanced Solid Rocket Motors

(ASRMs) or additional liquid rocket oxygen-hydrogen or oxygen-RP motors. Payload

capabilities shown assume a kick stage or use of the upper stage with a suborbital

bum to improve usable payload weights. Usable payload masses range from 70 tons

to LEO for the solid-boosted NLS to 200+ tons with new twin liquid booster concepts.

For the STV study it is assumed that if the solid-boosted NLS derivative is all the

nation can afford, then each lunar mission would require two launches, and if the twin

liquid-boosted HLV is available, then each lunar mission can be flown in a single

launch.

b. No SSF accommodations for STV - Due to a scaling-back of the Space

Station Freedom design, this portion of the study assumed that no SSF

accommodations would be initially available for the STV. This drives the design to
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using either a single launch or multiple launches with Earth-orbit-rendezvous (EOR) to

assemble the Lunar Transportation Vehicle. This also limits the reusability of the

vehicle, as no on-orbit storage or refurbishment facilities are assumed available.

3.1.3 Available Technology

Late 1990's technology was assumed for the vehicle designs for this phase of study,

with additional technology development added as a cost discriminator.

3.1.4 Lunar / Mars Exploration Requirements

During phase 2 of the STV study, the primary mission requirements were for lunar

exploration and supporting a lunar outpost.

a. Baseline scenario description - The basic mission requirement was to place

four crew and adequate cargo on the lunar surface to conduct exploration missions of

the type outlined in the Stafford Synthesis Report. A description of typical lunar

surface payloads is given in Figure 3.1.4-1.

b. Alternate scenarios - Other lunar exploration scenarios studied included a

Rovers-first scenario, in which unmanned teleoperated rovers are sent to 'prospect' for

points of interest on the lunar surface, after which a manned roving habitat is sent for

further prospecting. Also studied was a 'lunar campsite' scenario in which a crew is

sent for a period of 45 days to explore and conduct experiments, leading to a full lunar

outpost. Further explanation of these scenarios is given in Section 3.3.4.

3.1.5 Non-SEI Mission Requirements

A description of non-SEI mission requirements was given in Section 1, the Design

Guide. During phase 2 of the STV study, these requirements were not levied on the

design
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3.2 Reference concept description

3.2.1 Groundrules and Assumptions

Our groundrules and constraints were: 1) operate ground-based using one or two

launches of the various NLS derived vehicle concepts (two launches require EOR), 2)

utilize as many NLS and NLS Upper Stage (NLSUS) components and facilities as

practicable, 3) minimize the number of individual elements to be developed and

produced during the scenarios (ie. minimize the number of stages and manned

modules), 4) utilize direct lunar descent and ascent to maximize missions flexibility

and safety (no Lunar Orbit Rendezvous (LOR)), and 5) reenter the manned module

directly to the launch site to minimize operations cost and complexity.

3.2.2 System Design and Operation

The Reference LTS Concept is ground-based with either direct launch of a complete

LTS using a single large NLS derivative vehicle, or two launches of the reference NLS

vehicle with Earth Orbit Rendezvous (EOR) and docking as the method for assembling

the LTS. The major components of the reference LTS are shown in figure 3.2.2-1 and

as an integrated single launch mission stack on top of the launch vehicle in figure

3.2.2-2. As is shown, use of common elements for either a personnel transport

mission (with some cargo capability) or cargo mission allows maximum mission

configuration flexibility while minimizing subsystem change. This concept can be

flown with either a cryogenic or storable propellant ascent stage with the launch

vehicle capability shown and is sized such that the storable propellant stage option

can deliver two metric tons to the lunar surface during a piloted mission and return 100

kg in addition to the crew. With smaller launch vehicle capability, only the cryo ascent

stage option is viable.

With a cryogenic ascent stage, analysis has shown that it should be possible to store

liquid hydrogen in carefully insulated tanks on the lunar surface for periods exceeding

six months with acceptable boil off losses. This option is preferred because it: 1)

requires no additional engine development or production, using the same engines for

descent and ascent, and 2) provides an additional seven to eight tons of payload on

each piloted flight, thereby eliminating approximately three lunar cargo flights at $1.3B
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each. We estimate that the the cryo ascent version has just over $10B in Life Cycle

Cost (LCC) savings relative to the storable ascent version.

The mission profile for the reference concept includes Earth-to-orbit, Lunar transfer,

lunar operations, and Earth retum phases. For a dual-launch option requiring EOR,

the TLI stage performs a suborbital LEO insertion bum and then waits at 160 nmi for

the second launch. At this altitude, air drag does not pose a threat to the massive (150

t) TLI stage. The lander, after launch, may or may not do a suborbital burn (depending

on the mass to orbit capability of the launch vehicle). If a sub-orbital burn is required,

the lander tank size would increase over what is shown. After rendezvous, docking,

and checkout, the TLI stage pushes the combined stack to trans-lunar injection. After

separation, the TLI stage is discarded by flying on a predetermined impact trajectory to

the surface of the moon where accounting and tracking of it is simplified.

A single launch piloted mission profile is depicted in figure 3.2.2-3. The system

operation is similar to the dual-launch case, except that the entire stack is integrated

on the launch vehicle, and no EOR is required. In both cases, the LTS is integrated in

the launch vehicle such that the crew module sits on top of the shroud making it

accessible to the ground crew prior to launch,and easily removed by the launch

escape system (LES) in case of an abort. For a cargo only mission, a "beanie" style

cap structure is attached to one shroud segment to cover the manned module

opening.

During the lunar operations phase, as shown in figure 3.2.2-4, the lunar landing

segment consumes the propellant in the lander tanks during lunar capture, descent,

and landing. Once lunar surface operations are completed, in preparation for the

retum to Earth, any remaining propellant in the lander tanks may be transferred to the

ascent stage prior to departure. When launching the crew capsule from the Lunar

surface, the ascent stage uses the lander as a launch platform, leaving the empty drop

tanks, landing gear, and associated structure behind on the lunar surface. The core

stage propellants are consumed during ascent and direct earth injection. The empty

core stage is then jettisoned prior to Earth atmospheric entry and left to reenter on a

safe disposal trajectory to the earth's surface. The crew module continues on a reentry

trajectory and lands at KSC.

For a cargo delivery mission using a single launch, the trajectory may be simplified by

employing a lunar-direct trajectory, as shown in figure 3.2.2-5. This is possible since
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retrieval of an aborted vehicle or cargo from a low Earth or low Lunar orbit may not be

feasible anyway. As shown in figure 3.2.2-6, the cargo mission uses basically the

same lander, propulsion module, and service module as the piloted mission, with

additional avionics in the service module to take the place of the crew module. The

cargo module could be either deployable or a habitat for a Lunar Campsite mission.

The lander tanks are emptied dudng descent and landing, and the lander remains on

the lunar surface for possible future use.

A summary weight statement for the Reference LTS Concept is presented in Figure

3.2.2-7.

3.2.3 Flight Element Description

a. TLI Stage - The TL! stage may be an adaptation of the proposed NLS upper

stage (NLSUS) in that it would use the same engines and avionics, but would have

much larger tankage and five engines. The engines used for performance and cost

estimates of this concept are RL10A-4Bs and are also used on the lander element

(see Main Propulsion section for engine description). For the dual launch case, the

TLI stage would be non-load bearing structure and be mounted inside a shroud during

launch. This allows it to be covered with Multi-Layer Insulation (MLI) to minimize

boiloff over the 30-day LEO stay. For the single launch case using the advanced 150

to 200 tonne NLS derivative, the TLI stage is load-bearing structure mounted below

the shroud and would be covered with foam and thermal paint (same as Saturn S4-B).

b. Common Crew Module - The reference LTS features a single reusable crew

module, shown in figure 3.2.3-1. This single crew module carries a crew of four and

serves as a transit habitat during the coast to and from the moon, as well as the

excursion module during the lunar landing and ascent (Apollo had a separate Lunar

Excursion Module or LEM), and as the Earth reentry and landing vehicle. Use of a

single manned module for the complete round trip eliminates the development of a

separate expendable LEM with its many duplicate subsystems, saving an estimated

$5B in LCC.

The module has a basic Apollo Command Module shape but is fourteen and a half

feet in diameter, allowing it to be transported in the Shuttle for possible use in other

mission scenarios while providing additional interior space required for a crew of four
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and longer duration habitation missions. It features a raked elliptic cone heat shield,

modified for 0.5 L/D in order to give the capsule adequate cross range for a direct

moon-to-Earth reentry with landing at KSC.

Selection of four instead of three crew was based on the desire for two-shift operation

to increase the work output during a surface visit and maximize return on investment.

Even larger crew sizes may be desirable to support extensive extra-vehicular activity

(EVA) and they can be accommodated for small crew module weight penalties (an

estimated 2.2 tonne increase for two extra crew). However, based on SSF design

work, it appears that teleoperation of on-board systems would substitute adequately

for an extra pair of eyes and ears required to support a two-person EVA, with off-duty

crew serving as back-up. Thus the third crew person would remain on earth, making a

four-person lunar crew viable for two shift operation.

The preferred Earth landing concept, shown in figure 3.2.3-2, features a steerable high

glide parachute, such as the parafoils being developed by the Advanced Recovery

Program at MSFC, in combination with an air bag impact attenuation system, similar to

the system developed for the ALS P/A module land recovery system. The high glide

chute system allows very accurate short-runway or prepared-site landings. The heat

shield is a disposable, low cost, light weight silica fiber matrix thermal protection

system that is jettisoned by the deployment of the air bags prior to touch-down.

If the high-glide chute system is deemed too costly or too high of a risk to develop or

use, then a set of ballistic parachutes, such as those used on the Apollo Command

Module could also be used, in conjunction with an omni-directional crushable impact-

attenuation system for improved stability during touch-down. This concept, shown in

figure 3.2.3-3, is capable of either land or water landings and allows the module to

land on minimally prepared landing sites. In order to minimize the effect of wind drift

while descending on the chutes, a terminal decelerator system, such as a retrorocket

would be required. In addition, up-linking landing site wind information to the crew

module, prior to reentry, would allow the module to bias its reentry trajectory to

counteract expected wind drift, further reducing landing zone size requirements.

c. Equipment Module -The LTS concept has an equipment module which

contains different subsystem modules for different missions. For the cargo only

mission, the equipment module is attached to the lander propulsion module and has a
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framework to carry and unload the cargo pallets, plus a full set of avionics and power

boxes with a passive Thermal Control System (TCS). For the piloted missions, the

equipment module is attached to the ascent stage tankset and has a simple adapter to

support the crew module. It has a larger power supply and an active TCS with

radiators and water boilers to handle the increased demands of the Environmental

Control and Life Support System (ECLSS), but the Inertial Measurement Unit (IMU),

the navigation unit, and the Computer Processor Units(CPU) boxes are omitted

because they are in the crew module.

The avionics is assumed to be a repackaged version of the NLSUS avionics with

additional on-board sparing to ensure six month mission life. In-house simulations of

lunar retum trajectories have shown that the currently proposed common lunar module

can leave the surface of the moon at any time and accurately land at Kennedy Space

Center (KSC) using an updated version of the NLS guidance package.

d. Ascent Stage - The ascent stage would ideally be a derivative of the NLS

upper stage (NLSUS), and consists of a propulsion module, tankset, and equipment

module adapter. For eady missions of around 45 days lunar stay time, the tankage is

similar in design to that on the proposed NLSUS, but has thermally-optimized support

struts and 80 layers of Multi layer Insulation (MLI). For later missions requiring longer

lunar stay-time, liquid hydrogen tank Vapor-Cooled Shields (VCS) and an on-board

LO2 refrigerator would be added to reduce propellant boil off to about 360 kg during a

six month stay.

The variation in payload mass with design lunar surface stay time for various boiloff

reduction schemes is shown in figure 3.2.3-4. Relative payload performance for the

storable ascent stage version, which suffers no boil off losses is given on the same

figure. Note that a cryogenically fueled ascent stage designed for six months on the

moon using current thermal control technology (24 layers of MLI) would have no

performance advantage over a storable stage, but would still have considerable

economic advantage since it requires no new ascent engine package and uses

current technology.

e. Lander- The lander module is a common element to both cryogenic and

storable-propellant ascent stage concepts and consists of four liquid hydrogen and
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four liquid oxygen tanks, tri-pod landing gear and associated support structure. The

lander can be configured to carry either an ascent stage with cargo modules, or a

cargo/habitat module. For the piloted ascent option, the lander also serves as the

launch platform for the Earth retum launch. For a cargo delivery mission, the cargo is

palletized and launched mounted transverse on the lander. This lowers the lander

center of gravity (cg) to avoid tip-over, and simplifies cargo unloading. The landing

capability is based on Apollo LEM technology and designed to handle one meter/sec

horizontal velocity and a 15 degree adverse slope at touchdown, without tip-over. The

gear lower center strut includes a shock absorber for attenuating residual touchdown

velocity. The gear is stowed folded for launch and is deployed using springs.

The landing gear lower struts are attached to the Lander lower structural interface ring.

This ring provides the interface between the TLI stage launch adapter and the Lunar

Lander stack. A system of struts transfers loads between this lower ring and a higher,

inboard structural ring which provides the detachable structural interface between the

Lander module and the Propulsion Module. The propulsion module is pyro-

technically disconnected from the top of the lander structure at lunar ascent launch.

An outboard structural ring, at the same level as the inboard ring, is connected to the

lower inboard rings with gussets. These gussets provide the load paths for the landing

gear and are the structural support interface for the Lander module tanks.

3.2.4 Subsystem Description

a. Lander Main Propulsion - The lander main propulsion system (MPS)

provides propulsion for all post TLI burns, including course change after TLI stage

separation, lunar capture, descent and landing, as well as lunar ascent, trans-Earth

injection, and ascent stage disposal for piloted missions. The lander main propulsion

systems for the Piloted and Cargo mission configurations are shown schematically in

figures 3.2.4-1 and -2 respectively.

The MPS is designed to 1) optimize weight and cost versus mission reliability by

providing optimum staging and quantity of engines, 2) minimize configuration change

between Piloted and Cargo missions, 3) provide a low center of gravity to simplify

lunar landing, and 4) minimize propellant loss due to boil-off during coast and lunar

stay mission segments.
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Optimum staging and configuration change minimization is accomplished through

modularization. For the piloted mission, the MPS is located on three modules; the

Propulsion Module, the Ascent tankset, and the Lander. For lunar ascent, the

propulsion module ascends with the ascent tanks, leaving the descent tanks with the

lander on the lunar surface. For the cargo mission, the ascent stage is not needed and

the associated ascent stage equipment (tanks, manifolds, flight vents, fill/drain ports,

and valves) along with the valved disconnects between the Lander and the Propulsion

Module are deleted and the feed lines from the Lander tank manifolds are plumbed

directly to the propulsion module engine feed manifolds.

(1) Main Engines-The main engines used for the lunar missions are

RL10A-4Bs, a modification of the LO2/LH2 RL10 A-3-3A, with a twenty inch

length extendible nozzle yielding an expansion ratio of 84:1. The engines

are rated at a maximum vacuum thrust of 20,800 Ibf each with a specific

impulse of 449 seconds with an oxidizer-to-fuel mixture ratio of 5.5:1. A more

complete description is presented in figure 3.2.4-3.

The current design for thrust vector control of each engine includes two

electromechanical ball-screw linear actuators equipped with redundant

electric motor drives. Recognizing the high-power demand and inherent

mechanical disadvantages of electromechanical ball-screw actuators, a

promising alternative design includes self-contained electrohydraulic

actuators powered by a turbo-altemator driven with hydrogen gas drawn

from the LH2 tank pressurization line.

The main engines are designed to be capable of starting at zero NPSH with

either liquid or vapor at the interface in order to settle propellants for full

thrust operation. They also include provisions for supplying autogenous tank

pressurization gases once the engines have been started, to ensure

homogeneous tank pressurization as the tanks drain.

(2) Propellant Tanks- Both the Ascent Stage and Lander tanksets are

launched full, with external load-bearing tank support structures designed to

support the tanks during launch and lunar landing. The lander tanks are

single wall 2090 AI-Li structures and are rigidly attached to the landing
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RL10A-4B

Vacuum Thrust, Ibf
Chamber Press, psia
Area Ratio
Specific Impulse, sec. (1)
Operation

20,800
565
84:1
449.5

Full Thrust

Conditioning
Weight, Ibm
Length, inches
Diameter, inches
Life, missions
Availability
DDT&E, $M ('89)
Unit, $M ('89) (2)

Overboard Dump
385
70
46
1

Jan 1991
10
2.3

(1) At MR=5.5
(2) Based on a lot of 66

Figure 3.2.4-3 RL 10A-4 Description
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platform structure, although they could be designed for easy removal on the

lunar surface. They are supported for launch thrust and lunar landing loads

by the landing gear and tank support structure and stabilized laterally by

graphite/epoxy tankset support struts with titanium end fittings.

The Ascent Stage tanksets are also single wall 2090 AI-Li structures

supported inside a graphite/epoxy honeycomb shell that distributes launch

loads from an aft launch vehicle interface ring, through the Lander and

Propulsion Modules, and on to the equipment and crew modules. The tanks

are supported in the shell structure by thermally optimized Passive Orbital

Disconnect Struts (PODS). The struts are under development at NASA JPL

and consist of concentric composite tubes; the outer tube designed for

ground, launch and lunar landing loads and the inner tube for smaller on-

orbit and lunar stay loads. Once in orbit, and after lunar landing, the outer

tube pulls away from the inner tube, reducing the heat leak through the

struts.

(3) Propellant Feed and Pressurization - The propellant feed and

pressurization system is designed to minimize changes between the piloted

and cargo mission configurations, minimize propellant loss due to boil-off

during coast and lunar stay segments, and provide high system reliability.

This is accomplished by modularizing appropriate components, by allowing

depressurization of the propellant tanks (thereby reducing propellant

temperature), and by providing an appropriate amount of checks and

interlocks.

For the Lunar lander segment, propellant is fed from tanks on the Lander

through valved disconnects to the Propulsion Module, enabling staging after

the lunar stay, or during an abort. During an abort, continuous propellant

flow is provided to the engines during tank switch-over and staging. As the

descent tanks near depletion, the ascent tank pressure-isolation valves

open, pressurizing the tanks. When the lander tanks are drained, the ascent

tank propellant valves are opened and propellant flows from the ascent

tanks. Check valves on the lander tank lines ensure that propellant does not

flow back into the lander tanks. After propellant flow from the ascent tanks
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has been verified, the lander tanks propellant acquisition and pressurization

valves are closed and the system vented, after which staging occurs.

Propellant feedlines are vacuum-jacketed, insulated stainless steel lines

and include restrained bellows joints that articulate to compensate for

thermal contraction and engine gimbal motion. Main feedlines and manifold

are 6.0 inches in diameter for both LO2 and LH2, and engine feedlines are

2.5 inches in diameter. All valves are electromechanically actuated

normally-closed valves and disconnects are rise-off-actuated.

Propellant gauging is accomplished by pressure-volume-temperature (PVT)

type sensors that are being developed by Ball Aerospace for NASA JSC. In

principle, they give a reading of the amount of propellant in a tank in low

gravity regardless of liquid orientation, not requiring settling thrusts as might

be required for an array of distributed point sensors. If the Pv'r gauge falls,

then extra settling thrusts could be done to gauge the propellant with a

backup system of distributed point sensors. The extra propellant required for

this would translate into reduced lunar surface stay time because less lunar

boiloff could be tolerated. The propellant gauging sensors are included in

the vehicle instrumentation system.

Tank pressurization is autogenous and includes pressurization lines for

delivery of pressurization gases (GH2 and GO2) from the engine-mounted

bleed ports through manifolds and valves and to the individual propellant

tanks. A helium pressurization system mounted on the propulsion module

provides pressurant until the engines are started. Check valves ensure that

helium is not lost through the engine bleed ports, and that GH2 or GO2 is not

fed to the helium tanks.

(4) Propellant Fill and Drain - Provisions are also made on each module for

vented flU and drain of the tanks associated with that module. The propellant

fill and drain system includes 4.0-inch vacuum-jacketed lines, valves and

disconnects from the launch vehicle, or ground supply interface to the main

engine feedline manifolds.
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(5)Tank Vent and Relief - Two separate tank vent and relief systems for both

fuel and oxidizer are provided, one for the Lander and one for the Ascent

Stage. During fill and ground-hold operations, the ground-vent system

maintains acceptable tank pressure by venting gas overboard. In space, the

thermodynamic vent system (TVS) combines several thermal control

functions, releasing propellant boiloff gases overboard to maintain

acceptable tank pressures, acting as heat exchangers to draw heat from the

remaining liquid, and acting as mixers, creating a fluid jet to keep the

propellant well mixed and equalizing pressures throughout the tank.

The TVS-mixer unit controls tank pressure in orbit by accepting either vapor

or liquid at its inlet, expanding it through an orifice (thereby cooling it), and

then extracting heat from the remaining tank fluid in a heat exchanger before

being vented overboard. A small, highly reliable pump provides liquid flow

through the warm side of the heat exchanger and also serves to keep the

tank contents well mixed.

b. Reaction Control System -The Reaction Control System (RCS) provides

attitude control during coast periods, rendezvous and docking maneuvers, lunar

lan_ing, and atmosphere reentry and provides limited delta-V capability. The

Reference LTS Concept RCS is a supercritical GO2/GH2 system, selected for its

minimal system weight, singularity of propellant types aboard the vehicle, clean

effluents, and overall system reliability.

For the piloted mission configuration, two RCS systems are provided, one on the

Lander Module and one on the Ascent Stage. The additional Lander system is

provided because of the greater vehicle mass and the reduction in propellant required

due to the greater thruster moment-arm allowed. During lunar transfer, insertion, and

descent, both systems are active, increasing vehicle control.

Schematics and thruster arrangements for the Lander Module and Ascent Stage are

shown in Figures 3.2.4-4 through 3.2.4-7. For each system, two 02 and two H2 tanks

are provided and filled before launch. While one set of tanks is supplying fuel to the

thrusters, the other set can be refilled, being supplied from the Ascent Stage main

tanks for the Ascent Stage RCS and from the Lander Module for the Lander RCS. The
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RCS propellant tanks are pressurized by heating the propellant in the tanks to

supercritical pressure. The tank heaters are powered by fuel cells, located on the

Service Module and fueled by the Ascent Stage RCS tanks.

For the Cargo mission, as shown in the schematic in Figure 3.2.4-8, the Lander RCS

tanks would be resupplied from the Lander fuel tanks and the fuel cells, located on the

Service Module, would be fueled by the Lander Module RCS tanks. Additionally, the

fuel cells would also be supplied fom the Lander RCS tanks.

c. Electrical Power- The electrical power subsystem hardware includes a

power source, distribution and control components, and associated cables and wire

harnesses for power distribution. It features redundant O2/H2 fuel cells fed from

accumulators filled from the vehicle main propellant tanks, as well as distribution and

control units and associated wire harnesses. The power supply is located on the

equipment module, with interfaces to the crew module and ascent stage or lander for

power distribution.

The primary power sources for all on-board systems are three 28 VDC, 4.6 kilowatt

hydrogen/oxygen fuel cells. The fuel cells are derived from the current STS design,

but operate on propellant-grade reactants, and are reduced in size from the STS

design due to lower power requirements. On the STV, each fuel cell consists of two

stacks of 32 cells each, with an nominal power output of 4.6 kilowatts. With three

running continously, the total power output is 14.0 kilowatts nominal, 24 kilowatts

peak. In the event of a fuel cell shutdown, the remaining two fuel cells can provide

mission power requirements. In the event of two fuel cell shutdowns, the mission

would be aborted, and the remaining fuel cell could provide emergency power to

critical subsystems for abort capability. For peak power loads during main engine

actuation, three expendable Lithium Thionyl Chloride (LiSOCI) batteries are included

in the power supply to supplement fuel cell power. The batteries are sized to provide a

total of 5.0 kilowatt-hours of power to the main engine actuators.

Fuel cell reactants are drawn from accumulators included in the Reaction Control

Subsystem. The redundant accumulators are sized to provide oxygen and hydrogen

reactants for both RCS and EPS functions for a period of time needed to fill the other

accumulators. Once filled, the reactants are isolated and heated to supercritical
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pressure. Reactants are then drawn off to supply the fuel cells through a system of

CRES manifolds.

The power distribution system consists of power distribution and control assemblies,

inverters, and remote switching devices. The power distribution assemblies interface

with other vehicle subsystems and external power supplies and provide relay

switching functions required for control of discrete vehicle elements and power

switching such components as heaters, transmitters, power amplifiers, and propellant

management electronics.

Electrical inverters are included to supply three-phase power to such equipment as

main engine actuators and valves, fuel cell controls, and certain ECLSS components.

The inverters are similar to current Shuttle inverters.

For power transfer, the equipment module has wire harnesses and interfaces to the

core stage and crew module. The crew module wire hamesses distribute power to

ECLSS and crew displays and controls, and the ascent stage wire harnesses

distribute power to health monitoring equipment, propellant management equipment,

and main engine valves and TVC actuators, as well as to the lander.

d. Avionics - Guidance and navigation equipment provides the means to

determine the flight path and attitude of the vehicle throughout the mission.

Navigation computes vehicle position and velocity, and guidance provides

autonomous trajectory control by adapting to dispersions in thrust, vehicle and

payload cg variations, and unmodelled uncertainties. Attitude control provides

"attitude hold" pointing, attitude rotation from one fixed attitude to another, and fixed

rotation rate for mission-unique requirements. Propulsion control and critical fluids

control accept attitude and velocity commands and provide required valve commands

to RCS engines and valves. Adaptive guidance and control optimizes the trajectory to

minimize the error, g-loading and constraints (such as heating rate during earth entry)

for given center-of-mass offsets and other non-nominal dispersions. Robust flight

controls provide control and command for vernier velocity changes as directed by

guidance in presence of faulted jets, with sufficient control authority to provide

required turning rates in space and orbital/entry maneuvers.
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A precise navigation fix of position and velocity is required prior to all rendezvous,

lunar landing or earth entry maneuvers. To provide the vehicle state vector, a set of six

inertial grade Ring Laser Gyros (RLG) to measure direction of delta-V, and a set of six

accelerometers to measure magnitude of delta-V are packaged in a Hexad Inertial

Measurement Unit (IMU). The IMU skewed axis expands fault tolerance while

minimizing the number of components. Growth to a less costly space qualified

GPS/GLONASS-aided IMU is highly desirable. Both GPS and GLONASS systems

are needed to provide a minimum of four state vectors because the only available

GPS satellites are almost behind the earth and will provide at most only one state

vector.

During orbital rendevous and docking operations (if required) a Ku-band

communications antenna will be deployed to measure range, range-rate and angles

for relative navigation to a target. New technology for microwave/RF fiber optic

waveguides will allow remoteable antennas without excessive losses in transmission

from PA output to antenna, relaxing antenna placement restrictions and reducing

vehicle integration requirements. Non-cooperative targets will be tracked by skin

tracking out to about 10 nm. For a cooperative target (transponder), maximum

tracking distance is about 200nm. Antennas will be stowed prior to deorbit. A laser

tracker could provide autonomous docking capability with a reflector target located on

the target vehicle.

Communication capability is provided between the vehicle and all Earth and orbital

support elements. This equipment is located on the crew module during a piloted

mission and on the equipment module during a cargo mission.

The communication and tracking (CT) function provides reception of uplinked

switching commands (if necessary), and downlink data and voice channels. S-Band is

the primary low rate interface for downlink telemetry and voice (and uplink for an

unmanned mission). Ku-Band is the primary high data rate 2-way link via Deep Space

Network (DSN) used for digital, voice and TV communications with earth, provided the

antenna/platform is not being used for rendezvous navigation. High resolution closed

circuit CCTV, VHM, and science data dumps are possible with bandwidth in

application access of 180 to 300 Mbps. Image compression chip technology may

allow NTSC (color) quality communication over S-Band. Microwave/RF fiber optic
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cable waveguide technology would allow remote antenna placement from the power

amplifiers. This reduces vehicle configuration and mission operations requirements.

Instrumentation and data handling subsystems provide all computation, health

monitoring, and control of the vehicle and its subsystems. Vehicle Health Monitoring

(VHM) is a rather new avionic function that extends individual subsystem built-in-test,

condition monitoring, status monitoring and command state verification monitoring by

considering the vehicle as a whole. The VHM function determines state of health of

the vehicle and passes this information to a "system manager" which is the Mission

Management (MM) function. Relation among disjointed subsystems and all vehicle

stage elements are taken into account as an autonomous entity.

The avionics architecture includes a federated set of processors, as shown in Figure

3.2.4-9. The fault tolerant processors interface to three robust photonic networks that

are contained in a common medium, resulting in a significant reduction of physical

connectors, known to be the largest contributors to unreliability. Separation of signals

is by wavelength division multiplexing. Functional partitioning of flight critical signals

from essential and non-essential signals reduces validation costs and recertification

when components are changed or new ones are added. The absence of MDMs

between computers and subsystem sensors and effectors places requirements on

subsystem components to be able to connect directly to the data buses (autonomy

level 3). Appropriate redundancy coupled with physical separation of redundant

channels gives rise to a "zero-down-time" network.

Bus network types that are current networks or about to have space application

include: Shuttle 1Mbps data bus (pre MIL-STD-1553), US/NATO combat aircraft MIL-

STD-1553B, MIL-STD-1773 the fiber optic equivalent of 1553 with transmissive or

reflective needs, 10 Mbps IEEE 802.4 bus utilizing token passing as the access

method of lEE standard 802 local area network (LAN); a potential network on

Freedom, 50 Mbps HSDB Linear (SAE AS4074.1) and HSDB Ring (SAE AS4074.2)

and 100 Mbps FDDI (Space Station). The three data bus media that form the physical

layer for the above standards are twisted wire pair, coax and optic fiber.

The modern avionics trend is toward common modules and standard interfaces,

allowing growth and technology changeout/upgrades without "gutting" the vehicle.
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Implementation costs are reduced, maintainability (high level of BIT and standard

interfaces) increases, and resource utilization is maximized since the system uses only

a few module types (less than twenty). Some common types include Space Station

Freedom DMS Standard Data Processor and a low power processor, both based on

Intel 80386 instruction set, Network Interface Units, Bus Interface Adapter and MultiBus

II backplane, and US Congress-mandated use of common modules by ATF (USAF), A-

12 (Navy), and LH (USA). DoD's Joint Integrated Avionics Working Group (JIAWG)

uses MIL-STD-1750A processors, 23-bit processors, SAE HSDB (linear), MIL-STD-

1553, bulk memory modules, programmable input/output modules, and power supply

modules. Standard requirements for each module include backplane interface,

test/maintenance interface and BIT coverage.

Controls and Displays (MI) provide crew interface to the vehicle monitoring and control

functions by providing color displays with graphics, icons and audible cues. The crew

is given limited control and status monitoring of the vehicle during critical mission

phases. Crew controls are simple menu selections since piloting skills may degrade

after six months in lunar environment.

The current design developed in consultation with astronauts and crew systems

experts features a system of three reconflgurable liquid crystal displays (LCD), The

LCD's can display graphical or numerical output and are driven by separate

controllers for redundancy. The displays and pushbuttons are reconfigurable and

would assist in reducing information overload by presenting only data applicable to

the current flight phase. This technology requires low power and is state-of-the-art in

current military and commercial systems.

eQ Environmental Control / Life Support-

(1) Environmental Control - Provisions on the crew module for atmosphere

supply and control, intemal equipment cooling, as well as metabolic and

equipment heat rejection.

The environmental control and life support subsystem provides, monitors,

and controls the crew module internal environment, as well as provides for

crew safety and welfare.
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Basic life support functions as applied to the STV can be grouped as shown

in Figure 3.2.4-10. Seven of the groups are fundamental to crew life

support, including atmosphere revitalization, temperature and humidity

control, water management, health and hygiene, waste management,

atmosphere pressure and composition control, and food management.

Another group, fire detection and suppression, relates to protection of the

crew in the case of an accidental fire. Lastly, EVA support is provided for

ingress to and exgress from the crew compartment on-orbit and at the lunar

base. To identify a life support system approach, these life support

functions can be applied in an interactive system configuration, as shown in

Figure 2.3.4-11. Shown are interfaces with other vehicle systems (i.e., fuel

cells) as well as identification of additional requirements for storage facilities

(i.e., trash). The system is an open loop life support system, with no

regeneration of either atmosphere or water. This open loop approach was

arrived at by analysis of an ECLSS closure break-even curve, as discussed

in Section 3 subsystem trades. Since an adequate supply of water is

provided as by-product of the fuel cell power supply system, only minimal

water stores and supply tanks are required for STV, and recovery of cabin

humidity condensate is not required. Atmospheric gases are supplied from

storage, and carbon dioxide is removed from cabin air by replaceable LiOH

canisters.

The schematic reflects the fault tolerance levels required for critical

equipment, with triple critical system components rather than separate triple

systems. For instance, there are three fans and three heat exchangers in the

cabin temperature and humidity control circuit with any one fan and heat

exchanger able to handle the total cabin heat load. The fan housing and

ducting are considered passive components not prone to failure and

therefore not requiring backup. There are three separate cooling water

circuits feeding triple heat exchangers, three separate Freon circuits feeding

up-sized single heat exchangers, and radiator panels containing triple fluid

paths. There are also double backup cooling-water pumps and Freon

circulation pumps.
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The pressurization and revitalization equipment maintains the crew module

internal atmosphere and provides a shirtsleeve environment. The cabin

pressure is 14.7 psi, with a composition of 21% oxygen and 79% nitrogen.

The system is open-loop, with all gases supplied from bottles or

accumulators.

For atmosphere pressurization, enough gaseous 02 and N2 is stored for two

complete repressurizations of the crew module in case of atmosphere

contamination. Metabolic 02 is drawn from the fuel cell reactant

accumulators, where it is drawn from the main propellant tanks as liquid,

heated, and stored at supercritical pressure. Cabin air is forced through filter

canisters for contaminant removal and through LiOH canisters for CO2

removal. The LiOH carbon dioxide removal system is mostly passive

structure with replaceable absorbent cartridges and does not require

backup. The replaceable UOH cartridges provide the necessary degree of

redundancy, with additional cartridges provided for an abort mission (14.4

days). All consumable stores are sized to provide for the abort mission.

An active thermal control (ATC) loop is incorporated into the environmental

controlsystem, with coldplates for electronic equipment cooling, a cooling

water loop for cabin thermal control, a Freon loop to cool vehicle heat loads,

various equipment heat exchangers, and a variety of heat rejection devices

designed for specific mission phases. Cabin heat loads are rejected to the

water loop by the cabin heat exchanger, the avionics heat exchanger, the

potable water heat exchanger, and the EVNIVA heat exchangers. The

water loop in turn rejects heat to the Freon loop by the Freon/water heat

exchanger, and the fuel cells reject heat to the Freon loop through the fuel

cell heat exchanger.

Heat rejection devices include ground support equipment (GSE) heat

exchangers, water and ammonia flash evaporators, and space radiators.

Prior to launch, heat is rejected through a GSE heat exchanger. During

launch, passive thermal sink for initial liftoff and a water spray boiler above

140,000 ft are employed until the vehicle separates from the launch vehicle,

after which radiators are deployed to reject heat. The water spray boilers
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may also be used to supplement the radiators during peak in-space heat

load periods. During ground-based crew module reentry, the water spray

boilers are used down to 140,000 ft, after which ammonia boilers are used

for landing and post-landing. The radiators used for these vehicles are

deployable triple-loop metallic radiators covered with a high reflectivity, high

emittance coating. The radiators are jettisoned with the core stage prior to

atmosphere reentry.

f. Personnel Provisions - Food, water, and waste management systems, as

well as fire detection and crew furnishings on the crew module.

The fire detection and suppression system includes smoke detectors in the cabin and

behind cover panels, as well as a central fire extinguisher, with ports in instrument

panels and closed areas. Because fire poses a significant hazard in an enclosed

pressurized environment, careful selection of internal materials will be essential to

avoid toxic combustion by-products in the case of fire.

The food management system provides for the storage, preparation, and preservation

of food for the crew. STV crew module food will be shelf stabilized, such as the type

used aboard the shuttle. This food has a shelf life of about six months without

refrigeration using the current Flight Equipment Processing Center (FEPC) packaging

techniques. Shelf life can be extended by modifying the packaging approach, such as

sealing the food in a controlled atmosphere, high in carbon dioxide and low in oxygen.

The water management system provides for potable water during the mission duration,

and includes a water storage tank with water drawn from the fuel cell by-products,

water dispenser, as well as tanks with a contingency water supply.

The waste management system includes urine and fecal waste collection bags with a

partition for privacy and pre-moistened wipes for personal hygiene. It is believed that

the exclusion of any kind of private facilities for the elimination of body wastes will be

unacceptable to the crew, given the duration of the mission and the possibility of

mixed-gender crews.

Crew furnishings include flight seats, emergency medical / health provisions, and

personal equipment storage provisions. The flight seats are similar to those on the
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STS Orbiter and provide restraint and impact attenuation for all phases of flight. They

can be removed and stowed during flight and include a personal emergency air

supply, similar to the Orbiter. The medical / health kit is provided for emergencies and

health monitoring enroute to or from the lunar surface.

)

3.2.5 LTS Performance

Parametric payload performance of the LTS concepts previously described is shown

in figure 3.2.5-1 for the Campsite mission. The variation in delivered lunar cargo with

initial mass in LEO (IMLEO) is shown for dual-launch piloted or cargo missions (single-

launch would be about the same) using either storable or cryogenically fueled ascent

stages. The performance variation between RL10A-4 and RL10B-2 powered piloted

cryo ascent stage is also shown.

These results indicate that a viable lunar exploration program could go forward even if

only the first model of NLS Heavy Lift Launch Vehicle (HLLV) were available, since it

is capable of putting almost 200 tons in LEO using two launches with suborbital bums

of the TLI stage and lunar lander. A better approach, however, may be to build a new

larger HLLV which could accomplish the piloted lunar mission with one launch and

reduce the burden on ground facilities. A new modular ETO launch system with a

degree of reusability should have launch costs comparable to, or less than, today's

National Space Transportation System (NSTS). Since ETO launch costs are

approximately half the total program Life Cycle Cost (LCC), significantly reducing the

number of launches with a larger HLLV should significantly reduce LCC.

3.2.6 Program Cost Estimates

Since relative cost data for the leading candidate HLLVs is not available at the time

this document goes to print, costs quoted in this section will be based on missions

utilizing two launches of the reference NLS HLLV which has an adequate definition

and costing basis.

Total LCC of the transportation portion of the "moon to stay" exploration scenario was

estimated. This scenario was first derived during the NASA 90-Day Space Exploration

Initiative Study and is very similar to Architecture III in reference 1. It requires

approximately 418 tons of cargo delivered to the lunar surface and 17 visits by a team
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of four astronauts to explore and assemble first a lunar outpost, then a permanent

lunar base.

The assumed schedule was; authority to proceed with exploration program in 1995,

first lunar explorer orbiter in 1999, first teleoperated mini-rover landed in late 2000,

and first NLS single-launch precursor lunar cargo mission in 2002. The precursor

cargo mission would deliver a pair of teleoperated exploration rovers with capability to

place and maintain remotely operated science stations and conduct significant

minerals prospecting. The first dual-launch missions would start in early 2004, with a

dual launch then every six months. The first four launches would be to deliver and

make operational the lunar outpost.

Key cost estimating assumptions were that: 1) the baseline NLS HLLV with solid

boosters would be available for no additional development cost to the program (we did

pay for developing the large 10m diameter shroud), 2) that the Cargo Transfer Vehicle

(CTV) and NLSUS would already be developed so that appropriate subsystems,

facilities, Ground Support Equipment (GSE), and test procedures would not have to be

developed and qualified again, and 3) program factors would be: requirements

growth = 30%, fee = 8%, govemment support = 15% for new manned elements and

5% for existing or unmanned elements.

Other cost estimating groundrules were that: 1) all estimates in constant-year 1991

dollars, 2) LTS launch site is KSC, Florida, 3) there are four equivalent ground test

articles ( one fatigue, one functional dynamic ground test, one propulsion test, and one

qualification/pathfinder), and 4) there are three LTS flight tests ( one TLI stage

launched to LEO, a second launch of the lander assembly to demonstrate automated

rendezvous and docking, and the single launch precursor cargo flight (off-loaded

propellants and payload) to demonstrate automated lunar landing).

The estimated costs for the crew module and launch escape system are shown in

Figure 3.2.6-1. The total DDT&E cost is $6.6B and the Theoretical First Unit (TFU)

cost is $660M. Similar data for the LTS core stage is shown in Figure 3.2.6-2. DDT&E

for the core stage is $1.1B and TFU is $108M. There would be a large cost savings on

the core stage because it was developed from the NLSUS.

Figures are not shown for the cost estimate of the two 10m diameter fairings, but the 95

foot long cargo fairing had a DDT&E of $400M and a TFU of $84M, while the 65 foot
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long core/lander fairing which mounted the LES had a DDT&E of $366M and a TFU of

$71M.

The LTS mission-peculiar hardware, such as the drop tanks, lander assemblies,

service modules, and launch adapters were estimated separately and are shown in

Figure 3.2.6-3. Note that the drop tanks and service modules vary between piloted

and cargo delivery flights, and are costed by mission type.

Cost estimates for the final piece of the LTS, the TLI stage, are shown in Figure 3.2.6-

4. This stage, like the core stage, also benefits from the eadier development of the

CTV and NLSUS. The total DDT&E estimate is $1.1B and the TFU is $220M.

The total LTS acquisition cost is summarized in Figure 3.2.6-5. The procurement costs

are for 32 sets of LTS hardware, enough for 30 lunar missions and two flight tests

during full scale development.

The total cost of operations and support over 22 years of the program were estimated

to be $16.6B. This breaks down to be: $10.4B for 64 launches of the NLS derivative

vehicle, $2.1B for mission operations, $1.5B for LTS processing, plus crew module

recovery and refurbishment, $930M for software maintenance, $800M for government

program support, $500M for facilities maintenance, and $320M for spares and repair

parts management.

Combining the acquisition cost with the operating and support costs we get just under

$51B as the total transportation LCC over the 22 years of the lunar exploration

program. This is for 17 piloted missions lasting up to six months and 13 cargo

missions to set up and service a permanent lunar base over a 17 year period. This

compares to $36B (in 915) for the Apollo program which placed 10 men on the moon

for very brief stays and returned 800 Ibs of rocks. Unfortunately, the $51B does not

include the cost of the surface systems, which will be the order of $5B to $10B, and

even the $3B to $4B per year peak funding to support LTS development appears to be

beyond NASA resources about the tum of the century. Accordingly, we looked at ways

to reduce costs even further, and ways to improve public awareness and support for

the lunar exploration program in general.

Note, that significant reductions in estimated LCC have already occurred to reach the

levels shown here. The LTS proposed in reference 1 had LCCs of around $75B for

NEW D658-10010-1 235



DO.,_"J.AIfD

O
m
i
i
i!

E
.E
.=

"O

.=
8
O

A

t_

o_

NEW D658-10010-1 236



,,SPW,,4V'D

!
NEW D658-10010-1 237



essentially the same exploration scenario. Ground basing the LTS eliminated $4.5B

of on-orbit infrastructure, and making the LTS a close derivative of the NLSUS saved

almost $6B in development costs. Manrating the NLS launch vehicle eliminated

another $2.5B in STS launch support. This brought us clown to $62.6B prior to the

configuration cost optimization trades discussed here. These trades showed that two

items; combining the transit and excursion crew modules into a single reusable

module, and eliminating the third stage ascent module in favor of drop tanks on the

core stage eliminated $11.6B of LCC.

Logically, the next step in reducing cost is to reduce the number of launches by using

a larger, more capable booster. If one of the liquid-fueled boosters shown in Figure

3.1.2-1 were available, the number of launches could in fact be reduced by half.

Assuming the lunar exploration program would pay for developing the new liquid

booster and the facility upgrades involved, we get from reference 5, a delta DDT&E of

$4.7B and a TFU of $870M for a 150 t NLS derived launch vehicle. Unfortunately, this

very high TFU puts the 150 t vehicle launch costs at more than three times those of the

70 t launch vehicle. The 70 t vehicle has lower launch costs because it has reusable

boosters (ASRMs), and to be cost competitive the advanced liquid booster derivatives

need to be made partially reusable too. Previous studies have shown that putting the

liquid booster engines in recoverable propulsion modules can reduce cost per flight by

up to forty percent (reference 6). A trade is required to see if the savings are adequate

to justify a new 200 t launch vehicle for the lunar exploration scenario.
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3.3. Phase 2 Trades and Analyses

The work performed under phase 2 of the STV Concepts and Requirements Study

was done in three distinct tasks, including Task 1: A single-launch LTS design

Architecture Study, Task 2: Crew Module designs, and Task 3: A Cost-optimum

reference vehicle.

3.3.1. Single Launch LTS Architecture Study

Design groundrules assumed for the Task 1 analyses are listed in Figure 3.3.1-1. The

significant groundrules include single-launch designs, use of low lunar orbit

rendezvous, and no Space Station accommodations available. This period of study

also focused entirely on a lunar transportation system (LTS). The major trades and

analyses performed led to the reference concept described in the previous section. A

summary of the trade evaluations follows. For this phase of study, the primary

measures of goodness included mission performance and life cycle cost.

Crew Launch on HLV vs. STS The options available for the launch of the crew for

a piloted lunar mission include launch aboard the LTS vehicle launcher and crew

delivery via the STS Shuttle. In the case of launch aboard the launch vehicle, the

crew module must be located at the top of the LTS stack in order to use a launch

escape system in case of a launch abort.

The performance and cost comparison of the crew launch options are shown in

Figures 3.3.1-2 and 3.3.1-3, respectively. From the perspective of performance, there

was little appreciable difference between the concepts, but from a cost perspective, the

HLV launch option was 1.3% to 8.4% lower than the STS-launch option, depending

on the portion of the Shuttle launch paid for.

Crew return The crew may be returned to the Earth in one of three ways. They may

retum directly to the ground via a direct-return crew module, or may be returned via the

Shuttle following an aerobrake or all-propulsive burn maneuver and rendezvous with

the Shuttle in low Earth orbit, as shown in Figure 3.3.1-4. In the direct-return case, the

crew module is substantially heavier due to the necessary thermal protection required

for Earth reentry, and thus mission performance suffers. In this case, an additional

cargo flight is required to make up the performance difference, given similar launch

vehicle capabilities, as shown in Figure 3.3.1-5. In the matter of cost, however, the
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ground-return system is favored by 1% to 6.3%, depending on the portion of the

Shuttle flight paid for to retrieve the crew module and crew, as shown in Figure 3.3.1-6.

An additional issue is the matter of abort capability. If the mission is aborted early, and

the crew must rendezvous with a Shuttle to return home, a rescue Shuttle flight must

be made with little advance notice, or the crew module must contain sufficient supplies

for a stay in LEO to await the Shuttle launch and rendezvous. With a ground-return

crew module, however, the crew may return to Earth immediately in the case of an

abort. A comparison of the impact of additonal crew module supplies for a 30-day and

60-day LEO stay is shown in Figure 3.3.1-7. In terms of additional cargo missions, one

additional cargo mission is required for a 30-day LEO stay, and two additional

missions are required for a 60-day LEO stay.

Number of Stages. The number of stages analyzed in this period of study included

a 2.5 stage vehicle, a 3-stage vehicle, and a 4-stage vehicle. 1.5 stage vehicles were

not considered because the TLI stage, assumed to be the launch vehicle upper stage,

was included as one of the vehicle stages. In the 2.5-stage case, the LOI/TEI stage is

replaced with a tankset, so that propellant for the transfer bums must be routed around

the crew module to the lander stage, as shown in Figure 3.3.1-8.

From a performance point of view, the 2.5 stage concept is favored, with one less

cargo mission required to deliver 418 tonnes of cargo to the lunar surface, as shown in

Figure 3.3.1-9. From a cost standpoint, shown in Figure 3.3.1-10, the 2.5-stage

concept is also favored, with 11% to 17% lower life cycle cost than the 3 and 4 stage

concepts, repectively. The differences in cost are due to the additional propulsion

systems developed and expended on each mission.

Ascent Stage Propellant. For a 6-month stay on the lunar surface, cryogenic

propellants will experience some boiloff, resulting in a decrease in delivered cargo

capability. With an ascent stage that uses storable propellants, this boiloff would be

eliminated, but the lower performance of storable propellants would result in

performance degradation. The addition of storable propellants also adds an extra

stage and corresponding propulsion system.

In vehicle performance, the cryo vehicle is favored because of its higher engine

specific impulse, assuming lunar surface propellant refigeration is available, as shown

in Figure 3.3.1-11. An additional two missions are required for the storable propellant
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case. With the cryo propellant vehicle, however, for an unsupported lunar staytime of

100 days, 1 extra cargo mission is required, and for 180-day stay, 2 extra cargo

missions are required, as shown in Figure 3.3.1-12. From a cost standpoint, however,

the cryogenic vehicle is less costly as shown in Figure 3.3.1-13, with costs ranging

from 6.4% to 4.4% less than the storable concept.

Alternate Storable Vehicle Concepts (6 crew). Other vehicle concepts that

make use of storable propellants included both ground-retum and aerobraked return

crew modules, this time designed for a crew of 6 rather than 4, in response to a

Stafford Commission recommendation of more extensive use of storable propellants

and a crew of six persons. These concepts were looked at only from a performance

perspective, and are compared in Figure 3.3.1-14. As expected, the delivered cargo

performance suffered from 5 to 10 tonnes less piloted cargo capability per mission.

None of the storable propellant options were able to perform the lunar mission in a

single HLV launch, given the large crew modules and vehicle sizes.

Single vs. dual crew modules. For a lunar mission utilizing lunar orbit

rendezvous, non-essential crew module mass may be left in LLO during the surface

staytime in order to minimize mass to the lunar surface. In this dual crew module case,

a transfer crew module is used for transfer to and from the moon, and an excursion

crew module is used for the lunar surface excursion. Given the design groundrules for

this study phase, the excursion crew module was assumed to be expended after each

mission. If the design does not utilize lunar orbit rendezvous, only a combined or

single crew module may be used for the entire mission.

In a dual crew module mode, the crew has the combined volumes of both a transfer

and excursion crew module during the transfer to the moon, and the excursion crew

module provides a redundant system in the case of failure. On the return leg,

however, only the transfer crew module is returned, so volume is more limited and no

backup crew module is available.

A single or combined crew module option gives the crew added volume throughout

the mission if sized for the entire mission duration, but also adds additional mass to the

descent and ascent phases of the mission, due to additional TPS, consumable

storage, and radiation shielding.
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From a mission performance perspective, the dual Crew Module is favored as shown

in Figure 3.3.1-15, resulting in two less cargo missions over the mission model. The

mass to the lunar surface is minimized, outweighing the penalty of additional mass

transferred to the moon.

From a cost perspective, however, the single crew module is favored as shown in

Figure 3.3.1-16, with 9.8% lower LCC. The additional module increases the hardware

development cost, and adds compexity to the checkout and test development cycle.

The expended excursion crew modules also add significantly to the production costs.

Lessons Learned The lessons learned from the single-launch Architecture Study

are given in Figure 3.3.1-17.

3.3.2. Crew Module Concepts

The U.S. Space program has a history of manned spaceflight extending back 30

years. Each program has had a specific purpose and destination, driving crew module

size, mission life, and crew size. Generally, the more extensive the mission purpose

is, the larger and more accommodating the crew module is.

Recent STV studies have focused on a return to the moon, but with the purpose of

going to stay. Phase 2 of the STV study focused more on limiting mass, and so crew

module designs were reduced in size and accommodations from the Phase 1 crew

module designs. Through the first part of this phase of study, the crew module

concepts shown in Figure 3.3.2-1 were used as a point of departure to exercise

subsystem trades and sensitivities. All concepts were designed for a crew of four.

Subsystem design and component distribution in the crew modules are affected by

vehicle functions during the mission. Because the vehicles are used in both piloted

and cargo modes and in the interest of minimizing crew module mass, some

subsystems such as power and thermal rejection can be located on the stage to

minimize duplication. The crew module, however, must also function for a short time

on its own, during reentry or aeromaneuver, and so must have required subsystems

on board. An example of the functional split between stage and crew module

subsystems is shown in Figure 3.3.2-2.
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Crew module concepts The dual crew module designs each provide 1.98 m3

habitable volume per person, similar to what was provided on Apollo. On the transfer

to the moon, the combined volume of 3.96 m3 is available as habitable volume. The

single-crew module designs are sized to provide 2.83 m3 of habitable volume per

person, approximately 40% more than the Apollo command module provided, due to

the longer inhabited duration.

The transfer crew modules are similar in shape to the Apollo command module. The

ground-return module requires an ablative thermal protection system and extra

structural integrity to survive earth reentry and landing. The aerobraked module is

attached to an expendable aerobrake and is recovered from LEO by the Orbiter. Dual

hatches allow for launch pad ingress/egress and orbital EVA, as well as orbital

docking ingress / egress. Windows provide viewing during docking procedures.

The excursion crew modules are cylindrically-shaped modules that are sized for four

crewmembers. Dual hatches allow for lunar surface ingress/egress, as well as orbital

docking ingress/egress. Windows provide viewing during lunar landing.

Launch / Return If the crew is launched aboard the LTS vehicle, provisions must

be made for crew safety in the case of launch aborts. A launch escape system similar

to that used on Apollo could be provided in the case of launch vehicle failure up to

300,000 ft. Beyond that point, the LTS stage could provide thrust for an abort to orbit.

One issue that impacts the aerobraked crew module design is launch abort. Because

the aerobrake is not suited for abort reentry, the crew module would need additional

thermal protection as well as added structural stiffening for recovery.

In regard to crew orientation, with an Apollo-style capsule, no significant impacts are

made on the crew module design. No repositioning of crew restraints is needed,

unless the crew module is also used for lunar landing, in which case the crew must be

positioned for a Iow-g lunar landing. With a biconic shape, the crew restraints would

either be repositioned, or the crew module would need to be inverted for launch and

transfer, as shown in Figure 3.3.2-3.

Lunar stayUme Increased lunar staytime impacts various crew module subsystems,

including pressurization and atmosphere revitalization, CO2 removal, heat rejection,

power supply, and personnel provisions.
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Internal Pressure - The influence of crew module internal pressure was studied,

based on a JSC study "Internal Atmospheric Pressure and Composition for Planet

Surface Habitats and Extravehicular Mobility Units", May 13, 1991. This gave a broad

approach to choosing optimal habitat internal pressures based on known interfaces

and mission purpose. Preliminary findings indicate that an internal crew module

pressure of 10.2 psi with 30% 02 provides good flexibility in operating between Earth

atmosphere, lunar transfer modules, lunar habitat, and EMU. Reducing the crew

module pressure from 14.7 psi to 10.2 psi only reduces excursion crew module mass

by 4%, and transfer module mass by less than 1%.

CO2 Removal - Several CO2-removal technologies are available as viable options

for use on a lunar LTS. Currently, the most important factors in deciding which

technolgy to use, based on mission duration and crew size, are weight and volume.

Other factors that need to be accounted for, though, include power usage, heat

rejection, consumable losses, and required servicing time. The CO2 removal

technologies considered in this trade are given in Figure 3.3.2-4, as well as a list of

systems used on previous and currently-designed vehicles. Other than the LiOH

system, all technologies shown are regenerable systems, providing CO2 adsorption

and desorption with alternating adsorption beds.

From Figure 3.3.2-5, a Lithium Hydroxide system similar to that used on the Shuttle

has least mass, given a crew of four on board for less than two weeks. If the mission

duration extends beyond 4 weeks, a regenerable Solid Amine, water-desorbed CO2

removal system with LiOH backup becomes mass-effective. However, other factors

such as power requirements, heat rejection, and consumable losses need to be taken

into account in determining the minimum mass subsystem. Based on just the

subsystem volume, the best system for the given crew size and mission is a Lithium

Hydroxide system. If the mission duration extends beyond 3 weeks, a regenerable

solid amine, vacuum-desorbed system or molecular sieve system (with UOH backup

in each case) become volume-effective, as shown in Figure 3.3.2-6.

Heat Rejection - In Figure 3.3.2-7, a preliminary analysis of heat rejection options

shows radiators to be mass-effective beyond 1 day on the lunar surface or in transit,

given the assumptions shown. Other issues that need to be addressed further include

protection from solar heating during the lunar day, and the thermal contribution of
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stored cryogenic propellants. Another issue is the placement of radiators on the lunar

excursion vehicle, and method of deployment and use.

Power Supply - Factors that affect power system selction include the average and

peak power levels, the duration of use, and for regenerable power systems, the

duration between storage and discharge cycles. On the lunar surface, the

storage/discharge cycle is every 14 days, so any regenerable system would need a

14-day storage capacity. In this case, batteries as a storage medium become

prohibitively heavy, as do gas storage bottles for fuel cell reactants.

As shown in Figure 3.3.2-8, high power-density batteries, such as expendable LJSOCI

batteries, are mass-effective for very short-duration use up to one day. For the current

LTS excursion vehicle, with a self-powered lunar surface stay of 2 days, fuel cells

remain the preferred option. Beyond two days, however, the addition of solar arrays

as a lunar-day power source is the most mass-effective option. Solar arrays are

assumed to be lightweight, hand-deployed arrays left on the lunar surface.

Combined ECLSS - Subsystem trade results given to this point were based solely

on the given subsystem. In fact, the subsystems interact as shown in Figure 3.3.2-9,

so any subsystem trade must include the interaction of other subsystems. For

example, water from the fuel cell byproduct can be used as drinking water, as well as

for coolant in the water boilers. Some CO2 removal systems also reject excess heat

and water vapor back into the cabin, and may require more power for operation. The

interaction of these subsystems can affect the outcome of a particular subsystem trade.

Figure 3.3.2-10 shows the combined subsystems mass impact as mission duration

increases. The reference system of fuel cell, LiOH CO2 removal, and water boiler has

minimum mass up to one day of support duration. From 1 to 5 days, added radiators

give the minimum system, and from 5 to 40 days, added solar arrays yield the

minimum-mass system. For a design for support beyond 40 days, replacement of the

LiOH system with a solid amine, vacuum-desorbed system is mass-effective. The

solid-amine, water-desorbed system is heavier due to water, power, and heat-rejection

requirements.

Personnel Provisions - Personnel provision changes for extended mission

duration may include a solar storm shelter, galley, health kit, exercise equipment,

recreation/entertainment equipment, commode, sleep stations. As shown in Figure

.... NEW D658-10010-1 269



,4rOff,4,_'O

0 0 0 0 0 0

Sal_
_ll
| 1

NEW D658-10010-1 270



0(0

I

I

,-.I

NEW D658-10010-1 271



DmJJNO

NEW D658-10010-1 272



3.3.2-11 for any extended lunar stay, the initial jump in mass is for a solar storm shelter

or shielding, considered a necessary addition for any extended lunar stay. Other mass

increases are shown for three cases - for a design with volumes based on NASA STD-

3000 volumes, a design with constant volume, and a design for a contingency stay

only, with no changes in crew accommodations. These mass increases are for pre-

designed changes made to optimize for a particular lunar stay, that would affect the

cargo capability of the piloted vehicle.

Alrlock - Because of limited use and the short habitation time on the lunar surface (48

hours after landing) the current LTS excursion module design does not include an

airlock, but like the Apollo excursion module, is vented and repressurized for EVA. An

external dust porch with stowage provisions for EMU outer garments can provide

some exclusion of lunar dust, and suits are stowed inside the crew module. An added

air shower, similar to the Skylab shower, may also be an effective means of removing

dust.

If the crew is to use the excursion module for extended pedods of time and do more

extensive EVA's, an added airlock may become mass- and cost-effective. Options

include a collapsible or inflatable aidock, and a rigid aidock.

Taking into account hardware mass, added air revitalization hardware, as well as

vented consumables, a rigid airlock becomes mass-effective for a 4-person crew doing

2 EVA's per day at 11 days, as shown in Figure 3.3.2-12. With a 6-person crew

(additional atmosphere losses), the rigid airtock mass crossover occurs at 7 days. If the

number of EVA's are increased to 3 per day, the crossover point is at 7 days for 4 crew

and 5 days for 6 crew. Collapsible or inflatable airlocks could provide even better

mass-efficiency, but might be more subject to damage than a rigid one.

Crew Size - Top-level mass comparisons are shown between the LTS 4-person

crew modules, 6-person crew modules, and the comparable Apollo crew modules in

Figure 3.3.2-13. Increase in mass from the Apollo crew modules (+45%) includes

increased size, as well as a 15% weight growth allowance added to dry weights, and

provision for radiation protection on board the transfer crew modules (+1100 kg).

Increasing the crew size to 6 adds 17-20% to the transfer crew modules (due to size,

crew provisions, and radiation protection), and 7% to the excursion crew module mass

(mainly due to size increase).
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3.3.3. Cost Optimum LTS Design

The goal of this period of study was to design a lunar transportation system that has

minimum cost and that operates from one or two launches of one of the NLS-derived

launch vehicles. In order to decrease program cost, several issues needed to be

addressed, including affordability, operability and supportability, as well as the

reduction of program risk.

Based on the results of past STV design trades, a cost-optimum vehicle concept

maximizes commonality with other system elements, and minimizes the number of

stages and crew modules to reduce development and production costs. A possible

flow of vehicle design derivation to maximize commonality is shown in figure 3.3.3-1.

An unpiloted lunar lander and ascent stage can use avionics, propulsion systems, and

reaction control systems developed for an NLS upper stage, which derives its systems

from the NLS launch vehicles and cargo transfer vehicles. From the unpiloted

vehicles, systems can be dedved for a large Trans-lunar Injection stage, as well as

piloted landers and ascent stages. Lunar crew modules can use systems developed

for a Personnel Launch System and/or ACRV.

Further reduction of cost and program risk may be achieved by reducing the cost of

lunar surface systems, and by changing the philosophy or reason for going to the

moon. A study of alternate lunar scenarios was also accomplished in this task.

a. NLS Upper Stage Characterisitics - Current NLS upper stage designs call

for a vehicle that will deliver 15,000 Ib to GEO using an NLS 1.5-stage vehicle, or in a

two-stage mode, where the upper stage is staged suborbitally. The Air Force-

sponsored Upper Stage Responsiveness Study in 1989 produced a range of designs

based on Titan IV and ALS launch vehicles that are consistent with the current NLS

study requirements. Shown in Figure 3.3.3-2 is a concept from that study that we have

used as a reference concept.

Commonality between the STV ascent stage and the NLSUS can lead to significant

development cost savings. Several issues that need to be addressed in the NLS

upper stage design that could impact the Evolution to an STV stage include mission

requirements, growth capability (tank size), engine redundancy level, and avionics

evolution.
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• Payload requirement 15 klb to GEO on
NLS-2

• Based on Titan IV upper stage for USRS

Features

• Single RL10-4 engine

• 21,200 Ib thrust, 447.4 sec Isp at MR 6.0

• 90 in. length with nozzle extended

• Expansion ration 84

• Load carrying body shell construction

• .707 elliptic dome propellant tanks

• Pallet mounted, redundant avionics

• Vehicle size (reference):

• Propellant loaded 48,900 pounds

• Stage dry weight 5,745 pounds

Figure 3.3.3-2 NLS Upper Stage Reference Configuratior,
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b. Suborbital Staging Benefits - With only circularization to a 160 nm orbit

provided by the upper stage, the HLV#1 delivers only 55700 kg to 160 nm, with a

staged mass margin of 6030 kg. By staging suborbitally, the LEO-delivered mass

increases to 84533 kg for the core stage launch (44 Idb stage thrust) and 94058 kg for

the TLI stage launch (110 kib stage thrust). The increase in delivered mass

corresponds to a large increase in stage size due to the propellant required for ascent

and LEO circularization.

The impact of reducing the size and thrust level (i.e. engine number) of the TLI stage is

shown in Figure 3.3.3-3, with the current reference shown with 5 RL10's. It can be

seen that the delivered cargo is relatively insensitive to the TLI stage mass, with a 82 t

increase in TLI stage size (inert + propellant) resulting in only a 4.5 t increase in

delivered cargo. Using a single J-2 engine causes a large increase in TLI stage size,

with little or no increase in delivered payload.

In summary, some benefit was seen from suborbital staging, especially if payload

margins are small.

c. Core Stage Configuration - One of the issues associated with using an

NLSUS-derived core stage is the landed configuration of the vehicle. With the RL10-

B2 engines on the NLSUS-derived core, the crew module is situated 13.1 m above the

lunar surface, as shown in Figure 3.3.3-4 for an early cost-optimum vehicle

configuration. If the core stage is reconfigured placing the LO2 in saddle tanks, the

height of the landed configuration is reduced to 10 m and the landing gear spread is

reduced, but the crew module is now recessed in between the drop-tanksets, and the

core is no longer a direct derivative of the NLS upper stage.

The benefit of reduced height off the lunar surface was not deemed sufficient reason at

this point to alter the vehicle design. Later analysis of the ground-based vehicle

configuration, and the use of RL10-A4 engines further reduced the crew module height

to 10m.

d. Lunar Surface Boiloff Reduction - One of the disadvantages of high-performance

cryogenic propellants is the associated boiloff during long-duration missions,

especially on the lunar surface during a six-month stay. A basic groundrule of the

initial performance analyses, assuming an established lunar base, was that some form
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of cryogenic propellant refrigeration would be provided on the lunar surface and that

boiloff was controlled.

In the absence of such a refrigerator, several options have been proposed to minimize

the impact of propellant boiloff. Those include improved thermodynamic vent systems,

reduced heat leak paths, and additional insulation (all currently included on the

reference vehicle), vapor-cooled shields, a reflective lunar surface 1arp' to minimize

heat reflection from the surface, on-board cryo refrigeration, or the use of storable

propellants on an ascent/return stage.

The effect of vapor-cooled shields on boiloff rate can be seen in Figure 3.3.3-5,

especially for LH2. At the current design MLI thickness of 3.3 cm, the lunar day

average LH2 boiloff rate is about 2.7% per month. With vapor-cooled shields, the rate

drops to about 0.6% per month. These rates are given for the current reference

vehicle concept, with 13.8 t of propellant remaining in the core stage at lunar landing.

Combinations of MLI, TVS, refrigeration, and reflective surface cover have been

compared with the reference case to arrive at a minimum mass solution to minimize

surface boiloff. That solution can then be traded against a storable propellant ascent

stage option.

The reference design has 80-layer MLI, a mixing thermodynamic vent system for on-

orbit thermal control, optimized tank support struts, and no reflective surface cover.

Because the reflective surface cover is a large mass item and would probably not be

reusable, that option was not considered further.

The various boUoff-control options are shown plotted in Figure 3.3.3-6 as cargo mass

impact versus time on the lunar surface, compared to a no-boiloff reference. The

minimum mass system (24-layer MLI, no TVS or refrigeration) gives the most benefit

only for 2 - 5 days stay, then sharply decreases cargo capability with longer staytimes.

The option with the flattest slope is the option with an on-board LO2 refrigerator,

optimized thermal struts, 80-layer MLI, and a vapor-cooled shield, and reduces the

cargo capability by 1100 kg (6%) for a 6-month stay. For a 45-day stay, the least-

impact system is the current design, with 80-layer MLI and thermally-optimized struts.

The alternate option is to use a storable propellant ascent stage, but as was seen

before, the cost and poorer performance may outweigh the benefits.
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e. Shroud Diameter - 8.4 m vs. 10 m - The initial sizing of the current LTS

vehicle concept was done with an 8.4 m diameter shroud in order to maintain a

common diameter with the launch vehicle. For the current reference design with

expendable lunar drop-tanks, however, a larger diameter is desired to reduce the

vehicle complexity and to reduce the height of the crew module from the lunar surface.

This trade compared an earlier vehicle concept designed for the 8.4 m shroud with

one for a 10 m shroud to determine any performance or design benefits.

With an 8.4 m shroud, as shown in Figure 3.3.3-7, the vehicle includes a 4.4 m

diameter core stage sized for 24.1 t propellant with 8 drop-tanksets, as well as a 7.8 m

diameter TLI stage. The piloted mission capability is 2.6 t of lunar cargo, and a dual-

launch cargo capabilityis 26.8 t cargo. In a single launch mode, the cargo capability is

9.9t.

With a 10.0 m shroud, as shown in Figure 3.3.3-8, the vehicle includes the same 4.4 m

diameter core stage sized for 24.1 t propellant, but with only 6 drop-tanksets, as well

as an 8.4 m diameter TLI stage. The piloted mission capability is 3.0 t of lunar cargo,

and a dual-launch cargo capability is 28.3 t cargo. In a single launch mode, the cargo

capability is 11.6 t.

The 10.0 m diameter shroud size has both performance and configuration benefits and

is the preferred size. It is currently assumed for the reference concept.

f. Altemate Exploration Scenarios - After transportation system costs and risks

have been minimized, the only remaining way to reduce overall program cost and risk

is by reducing the cost of surface systems, or by extending the effectiveness of the

astronauts to reduce the number of manned flights required, Accordingly,we

performed an architectural analysis to review the lunar exploration goals and activities,

and to propose altemate goals and activities which have different emphasis areas and

modified schedules. The first question we asked is "Why should we go back to the

moon?" The alternatives include setting up and maintaining a Lunar base, performing

geological / astronomical science, using the moon mission as a precursor to a Mars

mission, and making use of lunar resources. We conducted an informal survey on that

question in order to determine which exploration scenario would gather the most

public support.
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The most often stated reason is to perform lunar science and better understand

formation of the solar system. That answer is acknowledged as a good reason to the

average layman, but not as the sole justification for a $50+ B program. The next most

stated reason is to expand the human habitat and demonstrate readiness to go on to

Mars. That answer does little for the layman, because the trip to Mars is at least thirty

years in the future and so is viewed as science fiction.

The proposed reason which got the most support was to discover and map valuable

resources for future utilization. The average layman feels humankind will expand into

the solar system someday, and it is worth an investment now to insure his/her

descendents will have access to the most valuable regions in the distant future. With

this knowledge in hand, we set out to design a "lunar prospector scenario'.

Locating valuable resources on the moon will not be an easy task. Most of the surface

is covered with several meters of semi-homogenous regolith. Exposed bedrock can

be surveyed optically using spectroscopy, but vast areas must be surveyed by core

drill down through the regolith. This will require surface exploration by long range

rovers, which are in the baseline scenario, but happen well after the permanent

outpost because they require extensive ground support systems.

If surface exploration and minerals prospecting is_the primary goal of this scenario,

then why not introduce long range rovers first, and build the permanent outposts later

on the most lucrative sites for further development. The benefits of this approach are:

probable delay in the development of the expensive surface infrastructure, a much

better understanding of surface conditions when it finally becomes time to build, and

the possibility that if the moon is useless for future development we will know about it

before we commit major resources.

When we examined the requirements for long-range rovers, we determined the key

missing "ingredient" was a lightweight, long-lived power source. We then surveyed

power sources and found two capable of doing the job, and one outstanding near-term

candidate. One already proposed system is the regenerative fuel cell combined with

solar panels to recharge the system during lunar day. Although heavy (2.5 tons for a

30 ton rover), this system is already being space qualified for SSF so it should be

available. Both the other candidates are radioisotope powered electrical generators.

The Radioisotope Thermoionic Generator (RTG) is a proven, space qualified unit with

NEW D658-10010-1 289



,4FO,_'JA/'_

ten to twenty year life. Its problem is low efficiency (<7%) which makes it heavy (6

watts/kg).

A new concept now in test, the Radio-isotope Thermophotovoltaic (RTPV) power

source, promises efficiencies over 30% using the same standard radioisotope energy

source. The efficiency comes from using the white-hot radioisotope as a light source

for special photovoltaic cells designed to operate in the infrared part of the spectrum.

An important feature of these cells and their backing plate is that most of the light they

cannot convert into electricity is reflected back into the radioisotope source where it is

reabsorbed and remitted. This allows high efficiency and 20 to 30 watts/kg specific

power.

A design sketch of a possible habitat on wheels long-range rover configuration is

shown in figure 3.3.3-9. Key features proposed are: a 30 meter coring drill, a heavy-

duty manipulator arm to uncover samples and clear obstacles, a television eye

mounted on top of tall antenna for surface navigation, and redundant airlocks to insure

egress and ingress. The power cart towed behind the vehicle contains fifteen lkw

RTPV generators and the waste heat rejection radiators.

The man tended rover would be landed intact but unmanned using a modified

standard cargo lander as shown in figure 3.3.3-10. The need to land almost 30 tons in

one piece drives the low "bed height" for this type of lander, and the elevated

propulsion tankage is not a large weight penalty.

The results form the rovers first architecture analysis indicated that 8 manned missions

and 10 cargo flights are required to deliver 315 tons of man-tended facilities and

transportable elements. The biggest savings are probably in the cost of surface

elements, but they haven't been costed during this exercise.

A cost analysis of the various transportation options is shown in figure 3.3.3-11. The

baseline LTS using the reference 70 ton NLS HLLV had a transportation LCC of $51B.

Switching to a new 150 ton liquid-boosted launch vehicle reduced the number of

launches by half, but showed no improvement in LCC, due to the increased DDT&E

and cost per flight. Adding reusability to the booster elements using in-house data on

recoverable engine pods, reduced program launch costs (and LCC) by about $4B.

NEW D658-10010-1 290



O00AlrO

NEW D658-10010-1 291



NEW D658-10010-1 292



_-o __o

gouJu _'o

e_- _o=

.o__,<_ ,., lg=
C,,IC

,--- -.
o_-_ _ o o

,_ _= oo

..,+oo_+oo -_= _ _-_._m

o_G

C
0

m

0
E

0
L_

eL

!- e.oo

-I

0

¢.)

r_

-- NEW D658-10010-1 293



,4FO,_c"JAI/'G

Incorporating the new "Rovers First" mission architecture reduced the number of flights

from 32 to 20, providing savings with respect to transportation elements of about $1B

in production costs and $3B in launch costs. Overall advantages of the rovers first

scenario are: lower transportation LCC ($4B reduction); lower technical risk since

program success doesnl hinge on delivery, assembly, and operation of an integrated

base complex; and lower political risk since the program requires less early

development of surface infrastructure and has a more salable program goal.

g. Lunar Campsite Scenario- An adaptation of the Rovers First Scenario is a

Lunar campsite scenario, where an unmanned cargo flight delivers a lunar habitat to a

point of interest on the moon, followed by a piloted mission that delivers the crew and

a small cargo with rover and supplies for a 45-day stay. During that time, the crew

lives and works from the habitat, which remains on the cargo vehicle. Following the

lunar stay, the crew returns in the piloted ascent stage and return directly to the ground

in a ballistic return crew module.

This vehicle concept, shown in Figure 3.3.3-12, became our final reference concept,

as it is similar to the cost-optimized concept studied in Task 3 and meets all

requirements for the lunar outpost missions as well. In addition, this concept can be

used for the Rovers First Scenario, with the fixed habitat replaced by the roving habitat

shown in Figure 3.3.3-9. This concept could be even more versatile in that the ascent

stage could be a derivative of the NLS upper stage, with improvements in long-term

cryo storage capability, and could capture other non-SEI missions as well.
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